
Json Web Tokens

• What is JSON Web Token?

• When should you use JSON Web Tokens?

• What is the JSON Web Token structure?

• How do JSON Web Tokens work?

• Why should we use JSON Web Tokens?

What is JSON Web Token?

• An open standard that defines a compact and self-
contained way for securely transmitting information
between parties as a JSON object.

• Compact: Because of its smaller size, JWTs can be
sent through an URL, POST parameter, or inside an
HTTP header.

• Self-contained: The payload contains all the required
information about the user, avoiding the need to query
the database more than once.

When should you use JSON Web Tokens?

• Authentication: Once the user is logged in, each
subsequent request will include the JWT, allowing the
user to access routes, services, and resources that are
permitted with that token.

• Information Exchange: JSON Web Tokens are a good
way of securely transmitting information between parties,
because they can be signed.

What is the JSON Web Token structure?

• Three parts separated by dots (.), which are:

• Header

• Payload

• Signature

• A JWT typically looks like the following.

• xxxxx.yyyyy.zzzzz

Header

Payload

Signature

JWT Structure : Header

• Typically consists of two parts:

• hashing algorithm being used, such as HMAC SHA256
or RSA.

• type of the token, which is JWT,

• This JSON is Base64Url encoded to form the first part of
the JWT.

Header

Payload

Signature

JWT Structure : Payload
• Payload contains the “claims” - statements about an entity (typically,

the user) and additional metadata. Three types of claims:

• Reserved claims: A set of predefined claims which are not
mandatory but recommended, to provide a set of useful,
interoperable claims. Examples: iss (issuer), exp (expiration time),
sub (subject), aud (audience)

• Public claims: These can be defined at will by those using JWTs.
To avoid collisions they should be defined in the IANA JSON Web
Token Registry or be defined as a URI that contains a collision
resistant namespace.

• Private claims: These are the custom claims created to share
information between parties that agree on using them.

Header

Payload

Signature

JWT Structure : Signature

• Take the encoded header, the encoded payload, a
secret, the algorithm specified in the header, and sign it.

• The signature is used to verify that the sender of the
JWT is who it says it is and to ensure that the message
wasn't changed along the way.

• For example if you want to use the HMAC SHA256
algorithm, the signature will be created in the following
way:

Header

Payload

Signature

The Token

• The output is three Base64
strings separated by dots
that can be easily passed in
HTML and HTTP
environments,

Another Example

The Claims

How do JSON Web Tokens work?

• When the user successfully logs in using their credentials,
a JSON Web Token will be returned and must be saved
locally, perhaps in local storage in a browser.

• If user wants to access a protected route or resource, the
the JWT is sent, typically in the Authorization header
using the Bearer schema

Stateless APIs

• The server's
protected routes will
check for a valid JWT
in the Authorization
header, and if it's
present, the user will
be allowed to access
protected resources.

• Token contains all the
necessary
information.

• Token may even
make requests to
downstream services

Why should we use JSON Web Tokens?

• Compact : Less verbose than XML, more compact than
Security Assertion Markup Language Tokens (SAML).

• Security: JWT tokens can use a public/private key pair in
the form of a X.509 certificate for signing. Signing XML
can introducing obscure security holes compared to the
simplicity of signing JSON.

• Convenience: JSON parsers are common in most
programming languages because they map directly to
objects. Conversely, XML doesn't have a natural
document-to-object mapping

