Json Web Tokens

- What is JSON Web Token?

- When should you use JSON Web Tokens”

- What is the JSON Web Token structure?

- How do JSON Web Tokens work"?

- Why should we use JSON Web Tokens?

What is JSON Web Token?

- An open standard that defines a compact and self-
contained way for securely transmitting information
between parties as a JSON object.

- Compact: Because of its smaller size, JWTs can be
sent through an URL, POST parameter, or inside an
HTTP header.

- Self-contained: The payload contains all the required
iInformation about the user, avoiding the need to query
the database more than once.

When should you use JSON Web Tokens?

- Authentication: Once the user is logged in, each
subsequent request will include the JWT, allowing the
user to access routes, services, and resources that are
permitted with that token.

Information Exchange: JSON Web Tokens are a good

way of securely transmitting information between parties,
because they can be signed.

What is the JSON Web Token structure? [

- Three parts separated by dots (.), which are: Payload
- Header Signature
- Payload
- Signature

- A JWT typically looks like the following.

* XXXXXVYWWWY.Z2Z272727

Header

JWT Structure : Header

- lypically consists of two parts:

+ hashing algorithm being used, such as HMAC SHA256
or RSA.

- type of the token, which is JWT,

-+ This JSON Is Base64Url encoded to form the first part of
the JWT.

{
"alg": "HS256",

"typ": "JWT"
}

WT Structure : Payload

Payload contains the “claims” - statements about an entity (typically, Payload
the user) and additional metadata. Three types of claims:

- Reserved claims: A set of predefined claims which are not
mandatory but recommended, to provide a set of useful,
interoperable claims. Examples: iss (issuer), exp (expiration time),
sub (subject), aud (audience)

- Public claims: These can be defined at will by those using JW Ts.
To avoid collisions they should be defined in the IANA JSON Web
Token Registry or be defined as a URI that contains a collision
resistant namespace.

- Private claims: These are the custom claims created to share
iInformation between parties that agree on using them.

{
"sub": "1234567890",

"name"” : "John Doe",
"admin": true

}

JWT Structure : Signature

- Take the encoded header, the encoded payload, a
secret, the algorithm specified in the header, and sign it.

Signature

- The signature is used to verify that the sender of the
JWT is who it says it is and to ensure that the message
wasn't changed along the way.

+ For example if you want to use the HMAC SHA256
algorithm, the signature will be created in the following
way:

HMACSHA256 (
base64UrlEncode(header) + "."

base64UrlEncode(payload),
secret)

"sub": "1234567890",
"name"” : "John Doe",
"admin": true

The Token

"alg": "HS256",
“typ": "JWT"

HMACSHA256 (
base64UrlEncode(header) + "."
base64UrlEncode(payload),
secret)

The output is three Baset4
strings separated by dots

that can be easily passed in
HTML and HTTP
environments,

eyJhbGci0iJIUzZITNiIsInRScCI6IkpXVCJ9.

eyJzdWIiOiIxMjMONTY30ODkwIiwibmFtZSI6IkpvaG4

gRG91IiwiaXNTb2NpYWwiOnRydWV9.

4pcPyMDB901PSyXnrXCjTwXyr4BsezdI1TAVTmud2fU4

® © ® Blusonweb Tokens - jwtio

ALGORITHM = HS5256

Encoded Decoded

HEADER:
eyJhbGci0iJIUzITNiIsInRS5cCI6
IkpXVCJ9.eyJzdWIiOiIXMjMONTY { .

"alg": "HS256",
30DkwIiwibmFtZSI6IkpvaG4gRGY tyvn® 4 hrs
1TiwiYWRtaW4iOnRydWV9.TJVASS }
OrM7E2cBab3@RMHrHDcEfxjoYZge
FONFh7HgQ PAYLOAD:

{

"sub": "1234567890",

"name" : "John Doe”,

"admin": true

}

VERIFY SIGNATURE

HMACSHA256 (
base64UrlEncode(header) + "." +
base64UrlEncode(payload),
secret

) (secret base64 encoded

& Signature Verified

Another Example

{
ll.vt\y“g/vll:llJWTll’

"alg":"HS256"
}

{

"iss”:"http://trustyapp.com/”,
"exp": 1300819380,

“sub”: “users/8983462”,
“scope”: “self api/buy”
}

tR —™a%0Q " v+ni...SZu” pu€U...8Hx

Header

Body (‘Claims’)

Cryptographic Signature

The Claims

{

"iss”:"http://trustyapp.com/”, '« Who issued the token
"exp": 1300819380, +— When it expires
“sub”: "users/8983462”, +— Who it represents
“scope”: “self api/buy” +— What they can do

J

How do JSON Web Tokens work"?

- When the user successfully logs in using their credentials,
a JSON Web Token will be returned and must be saved
locally, perhaps in local storage in a browser.

- |f user wants to access a protected route or resource, the

the JWT Is sent, typically in the Authorization header
using the Bearer schema

Authorization: Bearer <token>

Server

. ! 1. POST /users/login with username and password
The server's °
protected routes wil 2. Creates s JWT
CheCk fOI’ 9 Valld JWT 3. Returns the JWT to the Browser

IN the Authorization

Weader, aﬂd I it'S 5. Check JWT signature.
present, the user will 6. Sends response to the client e e
ne allowed to access

orotected resources.

4. Sends the JWT on the Authorization Header

- Token contains all the
necessary

information. Stateless APls

- Token may even
Mmake requests to
downstream services

Why should we use JSON Web Tokens?

- Compact : Less verbose than XML, more compact than
Security Assertion Markup Language Tokens (SAML).

- Security: JWT tokens can use a public/private key pair in
the form of a X.509 certificate for signing. Signing XML
can introducing obscure security holes compared to the
simplicity of signing JSON.

- Convenience: JSON parsers are common in Most
programming languages because they map directly to
objects. Conversely, XML doesn't have a natural
document-to-object mapping

