
Aurelia Http

Http Clients

• Aurelia comes with 2 http client libraries:

• aurelia-http-client - A basic HttpClient based on
XMLHttpRequest. It supports all HTTP verbs, JSONP
and request cancellation.

• aurelia-fetch-client - A more forward-looking HttpClient
based on the Fetch specification. It supports all HTTP
verbs and integrates with Service Workers, including
Request/Response caching.

aurelia-http-client

• Provides a comfortable interface to the browser's
XMLHttpRequest object.

• Not included in the modules that Aurelia's bootstrapper
installs, since it's completely optional and many apps
may choose to use a different strategy for data retrieval.

• Must install it first…

Installing aurelia-http-client
• Step 1: Install the component via npm

• Step 2: Specifically include in Aurelia Build
Script

Using aurelia-http-client

• Import the client

• Create an instance (or inject it)

• Promises returned from:

• get

• put

• post

• delete

• etc…

import {HttpClient} from 'aurelia-http-client';  
 
let client = new HttpClient(); 
 
client.get('http://localhost:4000/api/candidates').then(data => { 
 console.log(data.content);  
});

DonationService

• Retrieve
candidates &
users from
api server

@inject(Fixtures, EventAggregator, HttpClient) 
export default class DonationService { 
 
 donations = []; 
 methods = []; 
 candidates = []; 
 users = []; 
 total = 0;  
 
 constructor(data, ea, hc) { 
 this.methods = data.methods;  
 this.ea = ea; 
 this.hc = hc; 
 this.getCandidates(); 
 this.getUsers(); 
 } 
 
 getCandidates() { 
 this.hc.get('http://localhost:4000/api/candidates').then(res => { 
 this.candidates = res.content;  
 }); 
 } 
 
 getUsers() { 
 this.hc.get('http://localhost:4000/api/users').then(res => { 
 this.users = res.content;  
 }); 
 }
...

DonationService

• Create a
donation

• post to API
Server

...
 
donate(amount, method, candidate) { 
 const donation = { 
 amount: amount, 
 method: method 
 }; 
 this.hc.post('http://localhost:4000/api/candidates/' + candidate._id + '/donations', donation)
 .then(res => { 
 const returnedDonation = res.content;  
 this.donations.push(returnedDonation);  
 console.log(amount + ' donated to ' + candidate.firstName + ' ' +
 candidate.lastName + ': ' + method); 
 this.total = this.total + parseInt(amount, 10);  
 console.log('Total so far ' + this.total); 
 this.ea.publish(new TotalUpdate(this.total)); 
 }); 
}

...

• save in donations array

• log it

• update total

• dispatch event to interested
parties

Response
callback

Cross Origin Requests

• A resource makes a cross-origin HTTP request when it
requests a resource from a different domain than the one
which the first resource itself serves.

• For example, an HTML page served from http://domain-
a.com makes an src request for http://domain-
b.com/image.jpg.

• Many pages on the web today load resources like CSS
stylesheets, images and scripts from separate domains.

Restrictions

• For security reasons, browsers restrict cross-origin HTTP
requests initiated from within scripts.

• XMLHttpRequest follows the same-origin policy.

• So, a web application using XMLHttpRequest could
only make HTTP requests to its own domain.

• To improve web applications, developers asked browser
vendors to allow cross-domain requests.

Cross Origin
Resource Sharing

(CORS)

• The Cross-Origin Resource Sharing (CORS) mechanism gives web
servers cross-domain access controls, which enable secure cross-
domain data transfers.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

Cross Origin Request (COR)

• These requests to donation-web will fail due to COR restrictions

• The server will need some small modifications to permit this

 
 getCandidates() { 
 this.hc.get('http://localhost:4000/api/candidates').then(res => { 
 this.candidates = res.content;  
 }); 
 } 
 
 getUsers() { 
 this.hc.get('http://localhost:4000/api/users').then(res => { 
 this.users = res.content;  
 }); 
 }

Hapi Cors Module

Update to donation-web

• Install cors module

• Index.js modifications:

const corsHeaders = require('hapi-cors-headers');  
 
...

server.ext(‘onPreResponse’, corsHeaders);  
server.route(require('./routes')); 
server.route(require(‘./routesapi'));
...

