Imports,

Decorators &

DI

Agenda

+ Imports
- Decorators

-+ Dependency Injection

—S2016 Imports

- The import statement is used to import functions, objects
or primitives that have been exported from an external
module

import defaultMember from "module-name";

import * as name from "module-name";

import { member } from "module-name";

import { member as alias } from "module-name";

import { memberl , member2 } from "module-name";

import { memberl , member2 as alias2 , [...] } from "module-name";
import defaultMember, { member [, [...]] } from "module-name";
import defaultMember, * as name from "module-name";

import "module-name";

import defaultMember from "module-name";

import * as name from "module-name";

import { member } from "module-name";

import { member as alias } from "module-name";
import { memberl , member2 } from "module-name";

import { memberl , member2 as alias2 , [...] } from "module-name";
import defaultMember, { member [, [...]] } from "module-name";
import defaultMember, * as name from "module-name";

import "module-name";

name
Name of the object that will receive the imported values.

member, memberN
Name of the exported members to be imported.

defaultMember
Name of the object that will receive the default export from the module.

alias, aliasN
Name of the object that will receive the imported property

module-name
The name of the module to import. This is a file name.

—xamples (1)

Import an entire module's contents. This inserts myModule into the current scope, containing all
the exported bindings from "my-module.js".

| 1 ‘ import * as myModule from "my-module”;

Import a single member of a module. This inserts myMember into the current scope.
| 1 ‘ import {myMember} from "my-module”;
Import multiple members of a module. This inserts both foo and bar into the current scope.

| 1 | import {foo, bar} from "my-module”;

—xamples (2)

Import a member with a more convenient alias. This inserts shortName into the current scope.

1 | import {reallyReallylLongModuleMemberName as shortName} from "my-module”;

Import an entire module for side effects only, without importing any bindings.

1 | import "my-module”;

Import multiple members of a module with convenient aliases.

1 | import {reallyReallylLongModuleMemberName as shortName, anotherLongModuleName as short} from "my-module”;

Complete Example

1 | // --file.js--

2 | function get]SON(url, callback) {

3 let xhr = new XMLHttpRequest();

4 xhr.onload = function () {

5 callback(this.responseText)

6 };

7 xhr.open("GET", url, true);

8 xhr.send();

9 | }

10

11 | export function getUsefulContents(url, callback) {
12 getJSON(url, data => callback(JSON.parse(data)));
sl

14

15 | // --main.js--

16 | import { getUsefulContents } from “file";

17 | getUsefulContents("http://www.example.com", data => {
18 doSomethingUseful(data);

19 | });

Decorators

Similar to Java
Annotations

Make It possible to
annotate and modity
classes and properties
at design time.

Libraries can
compose their own
decorators

class Person {

}

@readonly
name() { return “${this.first} ${this.last} }

Method & Class Decorators

Can be applied to

classes and class Person {
' @readonly
fLJr](BtI()r}E;' name() { return “${this.first} ${this.last} }
}

Broad range of

pOtential USES @isTestable(true)
class MyClass { }

PrOVIde el function isTestable(value) {

mechanism fOr return function decorator(target) {
rOVidin meta‘data target.isTestable = value;

9 9 }

about a class or }
function

Dependency Injection (Dl)

- When building applications, it's
often necessary to take a "divide
and conquer” approach by

oroblems.

1585 i ServiceB
- This translates to breaking down U

complex objects Into a series of
smaller objects, each focusing
on a single concern, and
collaborating with the others to
form a complex system.

oreaking down complex), ServlceA'
oroblems into a series of simpler { s]
ass

Dependency Injection (Dl)

- The work of
destructuring a system
can introduce a new

Service Locator

Sl || locates

complexity of
assembling’ he smaller n Locm,
parts again at runtime. ocates u

- Thisis what a
dependency injection
aims to simplify - using
simple declarative hints.

Benefits of DI

Dependency injection separates the creation of a client's
dependencies from the client's behavior, which allows
program designs to be loosely coupled

1. Creales
[Builder] L B .[Client Class]

A

l

e ~ -
= 3 Uses |
[IService1 } :

https://en.wikipedia.org/wiki/Dependency injection

https://en.wikipedia.org/wiki/Dependency_injection

DI Example

A CustomerkditScreen
needs to load a Customer

EBFWTIT}/ k)B/ |[) fr()rT1 a \A/E?k) import {CustomerService} from 'backend/customer-service’;

ESEBF\/RDEEI import {inject} from 'aurelia-framework';

@inject(CustomerService)

We Wouldnlt Waﬂt .to place export class CustomerEditScreen {

constructor(customerService) {

a” 'the deta”S Of our AJAX this.customerService = customerService;
. . . . this.customer = null;
implementation inside our)

CustomerkditScreen class.

activate(params) {
return this.customerService.getCustomerById(params.customerld)
.then(customer => this.customer = customer);

Instead, we would want to y
factor that into a }

CustomerService class that
our CustomerkEditScreen, or
any other class, can use
when it needs to load a
Customer.

DI Example

import {CustomerService} from 'backend/customer-service'’;
import {inject} from 'aurelia-framework'; Do
- The inject
@inject(CustomerService) deCOratOr
export class CustomerEditScreen
. — andthe
constructor(customerService) ¢
this.customerService = customerService; constructor
this.customer = null; Signa’[ure
}
match.

This tells the DI that any time it wants to create an instance of
CustomerEditScreen it must first obtain an instance of
CustomerService which it can inject into the constructor of
CustomerEditScreen during instantiation

Lifetime of
njected
Objects

Singleton

Transient

- A singleton class, A, is instantiated when it is first

needed by the DI container.

- The container then holds a reference to class A's

Instance so that even if no other objects reference it, the
container will keep it in memory.

- When any other class needs to inject A, the container

will return the exact same instance. Thus, the instance
of A has its lifetime connected to the container instance.

- These instances are created each time they are

needed. The container holds no references to them
and always creates a new instance for each request.

