
 Model View View-Model (MVVM)



Agenda

• GUI Patterns 

• Model View Controller - MVC 

• Model View View-Model - MVVM



Graphical User Interfaces 	

• User Interface development - 
can be notoriously complex.


• Inherent complexity: the GUI 
component set is at varying 
levels of abstraction with 
sophisticated event 
mechanisms:


‣ Controls


‣ Containers/Dials/Widgets


‣ Panels/Windows


‣ Menus/Buttons/Dropdowns


• Accidental complexity: domain 
logic can easily become 
hopelessly intermingled with the 
GUI specific logic. 3



GUI Events

• A significant source of complexity


• Fine-grained events 

‣ Mouse entered, exited  

‣ Mouse pressed  

‣ Radio button pressed, armed, rollover  

• Coarse-grained events:  

‣ Radio button selected  

‣ Action performed  

‣ Domain property changed 


‣ Managing the flow of these events requires careful consideration if design 
coherence is to be preserved.

4



GUI Patterns
• Reusable designs that can be realised with different toolkits:

‣ Model View Controller (MVC)

‣ Model View View Model (MVVM)


• Other patterns (http://martinfowler.com/eaaDev/)

‣ Notification

‣ Supervising Controller

‣ Model View Presenter (MVP)

‣ Passive View

‣ Presentation Model

‣ Event Aggregator

‣ Window Driver

‣ Flow Synchronization

‣ Observer Synchronization

‣ Presentation Chooser

‣ Autonomous View


5

In particular, read  
http://martinfowler.com/eaaDev/uiArchs.html 

for background to these patterns

http://martinfowler.com/eaaDev/
http://martinfowler.com/eaaDev/uiArchs.html


Key Principle: Separation of Concerns

“In computer science, separation of concerns (SoC) is a 
design principle for separating a computer program into 
distinct sections, such that each section addresses a 
separate concern. A concern is a set of information that 
affects the code of a computer program. A concern can 
be as general as the details of the hardware the code is 
being optimized for, or as specific as the name of a class 
to instantiate. A program that embodies SoC well is 
called a modular program.”

6

https://en.wikipedia.org/wiki/Separation_of_concerns



Model View Controller

• The Model/View/Controller (MVC) triad of classes is used to build user 
interfaces in Smalltalk-80.


• MVC consists of three kinds of objects:


• Model is the application object 


• View is its screen presentation 


• Controller defines the way the user interface reacts to user input 


• Before MVC, user interface designs tended to lump these objects together. 
MVC decouples them to increase flexibility and reuse 

7



Synchronization

• MVC synchronizes views and models via Observer Synchronization.


• A view must ensure that its appearance reflects the state of the model. 


• Whenever the model's data changes, the model notifies views that depend 
on it. 


• In response, each view gets an opportunity to update itself. 


• This approach allows multiple views to be attached views to a model to 
provide different presentations. 

8



View / Model

9



Controller

• MVC encapsulates response and 
model update mechanisms in a 
Controller object.


• The Controller is the “glue” 
between the Model and the View.


• The View renders model updates 
on the screen, but is not permitted 
to modify the model.


• The View forwards events to the 
controller


• The Controller does not have 
access to the screen but can 
modify the model.

10



MVC Sequence Diagrams

11



Potential Advantages

• Since MVC handles the multiple views using the same enterprise model it 
is easier to maintain, test and upgrade the multiple system.


• It will be easier to add new clients just by adding their views and 
controllers.


• Since the Model is completely decoupled from view it allows lot of 
flexibilities to design and implement the model considering reusability and 
modularity.


• This makes the application extensible and scalable

12



Model View View-Model

13

• Model: refers either to a domain 
model, which represents real 
state content 

• View: As in the MVC, the view is 
the structure, layout, and 
appearance of what a user sees 
on the screen.  

• View model : an abstraction of 
the view exposing public 
properties and commands. 
Instead of the controller of the 
MVC pattern, MVVM has ‘bound’ 
properties - automatically 
synchronised with the view



MVVM Sequence Diagram

14


