
Joi Validation

Validation

• A vending machine has several inputs that it needs to validate.

• If any of the inputs don’t match its expectations, the machine will halt normal
functioning and give some feedback to the user on what went wrong.

• E.g if you place a foreign coin in the slot, the machine will reject the coin and
spit it out into the coin return tray.

• Rely on the feedback we get from validation to make sure users can operate
systems correctly

• Joi is a Node.js module for data validation.

• Can validate any kind of JavaScript values:

• simple scalar data type such as a string, number or boolean

• complex values consisting of several levels of nested objects and
arrays

• Can be used as a standalone module in any Node application.

• hapi has been designed with Joi in mind (rather than the other way
around)

https://github.com/hapijs/joi

Fluent Interfaces
• Fluent interfaces are an

approach to API design.

• They’re also commonly
known as chainable
interfaces - consist of
methods that are chained
onto one another.

• Fluent interfaces can
promote more readable
code where a number of
steps are involved and
you’re not interested in the
intermediate returned
values.

const toast = new Toast() 
 .cook('3 minutes')  
 .spread('butter')  
 .spread('raspberry jam')  
 .serve();

const toast = new Toast(); 
toast.cook('3 minutes'); 
toast.spread('butter'); 
toast.spread('raspberry jam');  
toast.serve(); 

fluent

• If the return value of each
method call is another
Toast object…

Fluent Joi Interface

• Joi schemas are built
using a fluent
interface.

• A schema for a
Javascript date that
falls within the month
of December 2015,
and is formatted in
ISO date format

const schema = Joi.date() 
 .min('12‐1‐2015')  
 .max('12‐31‐2015')  
 .iso();

How Joi works: 4 Steps

A schema is an object that describes
application expectations and is what the app

will be checking real data against.

Joi Example 1

• To test a schema against a real value, use :

Joi.assert(value, schema);

• Joi will throw an error upon encountering the first validation failure.

const Joi = require('joi');  
 
const schema = Joi.string().min(6).max(10);  
 
const updatePassword = function (password) { 
 Joi.assert(password, schema);  
 console.log('Validation success!');  
};  
 
updatePassword('password');

Validation success!

Joi Example 1

• The error message
logged will contain
some useful
information about
where the validation
failed.

ValidationError: "value" length must be at least 6 characters long

const Joi = require('joi'); 
 
const schema = Joi.string().min(6).max(10);  
 
const updatePassword = function (password) { 
 Joi.assert(password, schema); 
 console.log('Validation success!');  
};  
 
updatePassword('password');

Joi Example 2: Scenario

• API collects data from automated weather measuring stations
around the world. This data is then persisted and can be retrieved by
consumers of the API to get up-to-the-minute data for their region.

• Each weather report that is sent by the stations has to follow a
standard format. The reports are composed of several fields and can
be represented as a JavaScript object

Joi Example 2: Sample

• Need to validate all the incoming data to ensure that it
matches the standard format.

• Accepting invalid data from a malfunctioning station could
cause unknown problems for consumers of my API

const report = { 
 station: 'Tramore',  
 datetime: 'Wed Jul 22 2016 12:00:00 GMT+0800',  
 temp: 93,  
 humidity: 95,  
 precipitation: false,  
 windDirection: 'E',  
};

sample
report

Joi Example 2: Validation Rules

• Specification of Valid WeatherReport data

Joi Example 2: Joi Schema

const schema = { 
 station: Joi.string().max(100).required(), 
 datetime: Joi.date().required(), 
 temp: Joi.number().min(140).max(140).required(), 
 humidity: Joi.number().min(0).max(100).required(), 
 precipitation: Joi.boolean(), 
 windDirection: Joi.string()
 .valid(['N', 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NW']), 
};

Joi Schema Types

Joi assert vs validate

Exception here

This statement
never executed

const Joi = require('joi'); 
 
const fruits = ['mango', 'apple', 'potato']; 
const schema = Joi.array().items(['mango', 'apple', 'grape']); 
 
Joi.assert(fruits, schema); 
 
console.log('This code will never execute');

Joi assert vs validate
const Joi = require('joi'); 
 
const fruits = ['mango', 'apple', 'potato']; 
const schema = Joi.array().items(['mango', 'apple', 'grape']); 
 
Joi.validate(fruits, schema, (err, value) => { 
 if (!err) { 
 console.log('The object was valid');  
 } else {  
 console.log('The object wasn\'t valid'); 
 } 
 
 console.log('This code will still run'); 
});

• Joi.validate() won’t cause an exception in the program if
the tested object doesn’t pass the validation:

• provides an error object which contains the details
of what happened during validation

abortEarly Option

const Joi = require('joi');  
 
const product = { 
 id: 5489,  
 name: 'Trouser press',  
 price: { 
 value: 34.88,  
 currency: 'GBP' 
 }  
};

const schema = { 
 id: Joi.number().max(4000), 
 name: Joi.string(), 
 price: { 
 value: Joi.number(), 
 currency: Joi.string().valid(['USD', 'EUR']) 
 } 
};

 
Joi.validate(product, schema, { abortEarly: false }, (err, data) => { 
 console.log(JSON.stringify(err.details, null, 2)); 
});

