
NoSQL Databases

Agenda

• Relational databases & the Impedance Mismatch

• The changing data landscape & the emergence
of NoSql

• Common characteristics of NoSQL databases

Databases
• Relational databases have been

a successful technology for
twenty year, delivering:

• Persistence: storage of data

• Concurrency: applications
have many applications
sharing the data at once.

• Integration: multiple
systems collaborating
together using a single
database.

Structured vs
Unstructured Data

• There is a divide between the relational model and the in-memory
data structures.

• Relational model:
• Organises data into a structure of tables and rows.
• Use relational algebra to conduct operations using SQL on

those relations.
• Relations have to be simple, they cannot contain any structure

such as a nested record or a list.
• In Memory Data Structures

• Take on much richer structures
• Lists, Queues, Stacks, Graphs, Trees, Networks, etc…
• Are a better match for certain types of problems

Structured vs Semistructured Data

Impedance Mismatch

• Considerable effort spent on mapping data between
in-memory data structures and a relational database.

Large Data Sets

• Organisations are finding it valuable to
capture more data and process it
quicker.

• … finding it expensive to do so with
relational databases.
• Traditionally relational database is

designed to run on a single machine
• More economic to run large data

and computing loads on clusters of
many smaller and cheaper
machines.

• Many NoSQL databases are designed
explicitly to run on clusters, so they
make a better fit for big data scenarios.

Emergence of NoSQL: Flexible Data Exchange

• During the 2000s there was a shift to
web services where applications
would communicate over http.

• These newer services use richer data
structures with nested records and
lists - usually represented in JSON

• In general, with remote
communication there is a need to
reduce the number of round trips
involved in the interaction

• so it’s useful to be able to put a
rich structure of information into a
single request or response.

Scaling Up / Scaling Out
• The 2000s also saw several large web properties dramatically increase

in scale - and these started tracking activity and structure in a very
detailed way: Links, social networks, activity in logs, mapping data.

• Coping with the increase in traffic required more computing resources
• Scale Up: bigger

machines, more
processors, disk
storage and memory.

• Scale Out: lots of
small machines in a
cluster.

As large websites moved towards clusters it revealed a new
problem, relational databases are not designed to be run on
clusters.

Common Characteristics
of NoSQL databases

• They do not use the
relational model.

• The do not use SQL

• Some have query languages
that are similar to SQL.

• Generally open source.

• Most are driven by the need
to run well on clusters.

Central Concept in SQL: The Table

• A table is a
collection of related
data held in a
structured format
within a database. It
consists of
columns, and rows.

Central Concept in SQL: The Aggregate

• An aggregate is a
collection of data
that we interact
with as a unit.

• These units of data
or aggregates form
the boundaries for
operations with the
database.

Table vs Aggregate

• Highly structured, rigid,
extensive, standardised
manipulation calculus
(SQL)

• Loosely defined concept

• Varies depending on NoSQL
DB type

• Not relevant to some DBs at all

Categories of NoSQL databases:

Data Model Example Databases

Key-value
Berkely DB, LevelDB

Memcached, Project
Voldemort Redis,Riak

Document CouchDB, MongoDB,
RethinkDB

Column-Family
Amazon SimpleDB,
Cassandra, Hbase

Hypertable

Graph FlockDB, HyperGraphDB,
Infinite Graph, Neo4J,

Key Value

• Simplest NoSQL data stores to use from an
API perspective.

• The client can either get the value for the
key, put a value for a key, or delete a key
from the data store.

• The value is a blob that the data store just
stores, without caring or knowing what's
inside; it's the responsibility of the
application to understand what was stored.

• Since key-value stores always use primary-
key access, they generally have great
performance and can be easily scaled

• The database stores and retrieves
documents, which can be XML, JSON,
BSON, and so on.

• These documents are self-describing,
hierarchical tree data structures which can
consist of maps, collections, and scalar
values.

• The documents stored are similar to each
other but do not have to be exactly the
same.

• Document databases store documents in
the value part of the key-value store; think
about document databases as key-value
stores where the value is examinable.

• Document databases such as MongoDB
provide a rich query language and
constructs such as database, indexes etc
allowing for easier transition from relational
databases.

Document
Databases

Column Family
Stores

• Column-family databases store data in
column families as rows that have many
columns associated with a row key.

• Column families are groups of related
data that is often accessed together.

• For a Customer, we would often
access their Profile information at the
same time, but not their Orders.

• Each column family can be compared to
a container of rows in an RDBMS table
where the key identifies the row and the
row consists of multiple columns.

• The difference is that various rows do
not have to have the same columns, and
columns can be added to any row at
any time without having to add it to
other rows.

Graph
Databases

• Graph databases allow you to store
entities and relationships between these
entities.

• Entities are also known as nodes, which
have properties.

• Think of a node as an instance of an
object in the application.

• Relations are known as edges that can
have properties.

• nodes are organized by relationships
which allow you to find interesting patterns
between the nodes.

• The organization of the graph lets the data
to be stored once and then interpreted in
different ways based on relationships.

MongoDB

• MongoDB is an open-source
document database that provides
high performance, high
availability, and automatic scaling.

• A record in MongoDB is a
document, which is a data
structure composed of field and
value pairs.

• MongoDB documents are similar
to JSON objects.

• The values of fields may include
other documents, arrays, and
arrays of documents.

• Documents (i.e. objects)
correspond to native data types in
JavaScript

• Embedded documents and arrays
reduce need for expensive joins.

• Dynamic schema supports fluent
polymorphism.

