Sessions in Hapi



Agenda

- Simple precursor to Sessions

+ Sessions via Cookies in Hapl



Sharing Information across an App

Before server launches, ‘bind’ index.js

an array of donations to the —

server object. server.bind({
donations: [],

Most commonly used to share })

database connection

iINformation



Sharing Information across an App

. . , INAdex.|S

This ‘donations’ array can J

subsequently be server.bind({
donations: [],

accessed In all handlers. 1)

Each handler can read/
write to this shared data

structure exports.donate = {

handler: function (request, reply) {
const data = request.payload;

All users donations held In this.donations.push(data);
, , reply.redirect('/report');

effectively a global array in | 1,

memory s

donations.|s



Separating out User Donations

- Try to keep track of iINndex.js
all users, server.bind({
currentUser: {},
users: {},
- the current user } donations: [1,
);

all donations.



_Registering &
Authenticating Users

exports.register = {

handler: function (request, reply) {

const user = request.payload;

\ reply.redirect('/login');
b » Record current user at login

exports.authenticate = {

fhic users [user emstl) 2 ooer. + Record user object at registration

handler: function (request, reply) {
const user = request.payload;

if ((user.email in this.users) && (user.password === this.users[user.email].password)) {
this.currentUser = this.users[user.email];

reply.redirect('/home");
} else {

reply.redirect('/signup');
b

};

accounts.|s




Creating & Listing
Jonations

exports.donate = {

handler: function (request, reply) {

let data = t. load; . '
data.donor = this.currentUsers Record donation + donor
this.donati . h(data); : :
reply. redirect - /report:) . when creating donation
I

donations.|s



exports.report = {

handler: function (request, reply) { * Seﬂd a” dOﬂa’[IOﬂS tO the
reply.view('report', { :
title: 'Donations to Date', View
donations: this.donations,

});

Donation

donations.js

Amount Method donated Donor

100 paypal homer simpson
50 direct homer simpson

50 paypal homer simpson

<tbody>
{{#each donations}}
<tr>
<td> {{amount}} </td>
<td> {{method}} </td>
<td> {{donor.firstName}} {{donor.lastName}} </td>
</tr>

{{/each}}
</tbhody>

donationlist.nbs



Summary

- Current approach - brittle and not scalable
- Server.bind to maintain global data
+ Store user + donation data structures
Revised Approach

Migrate to more robust, cookie based session
mMmanagement

Introduce proper persistence capability (a database)



Sessions

HTTP is described as a stateless protocol - every new request is
just as anonymous as the last.

- This sounds very unhelpful for a protocol that powers websites,
where users expect to be rememlbered as they go to page to page.

- Cookies to the Rescue:
- A request comes to a web application with a cookie

» using the cookie the server can look up information about the
user, either from the cookie itself or from server-side storage.

It can then forget all about them for a while, until the next request
and the same process continues over for every request.



hapi-auth-cookie

- A Hapi Plugin to
manage cookie access
and management.

- Must be downloaded,
installed and registered
(like all plugins)

https://github.com/hapijs/hapi-auth-cookie

README.md

hapi-auth-cookie
hapi Cookie authentication plugin
Lead Maintainer: James Weston

Cookie authentication provides simple cookie-based session management. The user has
other means, typically a web form, and upon successful authentication the browser rece
cookie. The cookie uses Iron to encrypt and sign the session content.

Subsequent requests containing the session cookie are authenticated and validated via
case the cookie's encrypted content requires validation on each request.

It is important to remember a couple of things:

1. Each cookie operates as a bearer token and anyone in possession of the cookie con
impersonate its true owner.

2. Cookies have a practical maximum length. All of the data you store in a cookie is ser
cookie is too long, browsers may not set it. Read more here and here. If you need to
small amount of identifying data in the cookie and use that as a key to a server-side

The 'cookie ' scheme takes the following required options:

cookie - the cookie name. Defaults to 'sid' .

* password - used for Iron cookie encoding. Should be at least 32 characters long.

ttl - sets the cookie expires time in milliseconds. Defaults to single browser sessic
closes). Required when keepAlive iS true.

* domain - sets the cookie Domain value. Defaults to none.

path - sets the cookie path value. Defaults to /.

* clearInvalid - if true, any authentication cookie that fails validation will be marked
and cleared. Defaults to false .



hapi-auth-cookie Installation & Registration

ﬂpm inSta” COmmand npm install hapi-auth-cookie -save

"name”: "donation-web",
"version”: "1.0.0",
"description”: "an application to host donations for candidates”,
"main"”: "index.js",
"scripts”: {
"test": "echo \"Error: no test specified\" && exit 1"

¥

"author”: "",
' "license": "ISC",
package.json updated e R
"handlebars”: "A4.0.5",
"hapi": "A14.1.0",
"hapi-auth-cookie": "A6.1.1",
"inert": "A4.0.1",
"vision": "A4.1.0"
} [
Register in index.|s

server.register([require('inert'), require('vision'), require('hapi-auth-cookie')], err => {



hapi-auth-cookie Configuration

Set an auth ‘strategy’ before
application starts

Specifies range or parameters,
INncluding:

password for securing cookie

: éé}ver.auth.strategy('standard', 'cookie', {
COOkle name password: 'secretpasswordnotrevealedtoanyone’,

cookie: 'donation-cookie',
ttl: 24 x 60 x 60 *x 1000,

time to live (expiry)




hapi-auth-cookie Configuration

By default hapi-auth-cookie
will only allow the cookie to
be transferred over a
secure TLS/
SSLconnection.

This may not be convenient
during development so you
can set the isSecure option
to false.

Set ‘standard’ as the
default strategy for all
routes

server.auth.strategy('standard', 'cookie’', {
password: 'secretpasswordnotrevealedtoanyone’,
cookie: 'donation-cookie',
isSecure: false,
ttl: 24 x 60 *x 60 *x 1000,

});

server.auth.default({
strategy: ‘'standard’,

F);




Annotating Routes

All routes are now
‘guarded’ by default,
cookie based
authentication mechanism

Any attempt to visit a
route will be rejected
unless valid cookie
detected.

Some routes need to be
available (to signup or
login for instance)

These routes must
specifically disable auth
mechanism

server.auth.default({
strategy: ‘standard’,

F);

exports.signup = {
auth: false,
handler: function (request, reply) {
reply.view('signup', { title: 'Sign up for Donations' });

by
b

exports.login = {
auth: false,
handler: function (request, reply) {
reply.view('login', { title: 'Login to Donations' });

by
b




Setting the Cookie

- Set the cookie if correct user
Credeﬂtials presented request.cookieAuth.set({

loggedIn: true,
loggedInUser: user.email,

F);

exports.authenticate = {
auth: false,
handler: function (request, reply) {
const user = request.payload;

if ((user.email in this.users) && (user.password === this.users[user.email].password)) A
request.cookieAuth.set ({

loggedIn: true,
loggedInUser: user.email,

});

reply. redirect{*7home);

} else {
reply.redirect('/signup');

Fy
¥




f cookie set, it can
oe read back in any
nandler

We are storing
logged In users
emall in this
example

Use this emall to
look up user details
IN some storage
iInfrastructure
(database).

Reading the Cookie

request.cookieAuth.set ({
loggedIn: true,
loggedInUser: user.email,

F);

const donorEmail = request.auth.credentials.loggedInUser;

exports.donate = {

handler: function (request, reply) {

}

let data = request.payload;

const donorEmail = request.auth.credentials.loggedInUser;
data.donor = this.users[donorEmaill;
this.donations.push(data);

reply.redirect('/report');




Clearing the Cookie

exports.logout = {
auth: false,
handler: function (request, reply) {

Cookie deleted request.cookieAuth.clear();
reply.redirect('/"');

b
Any attempt to access |,.

protected routes
rejected



Redirects

If route
protected, and
cookie deleted/
timeout

Redirect to login

server.auth.strategy('standard', 'cookie', {
password: 'secretpasswordnotrevealedtoanyone’,
cookie: 'donation-cookie',
isSecure: false,
ttl: 24 x 60 x 60 *x 1000,
redirectTo: '/login',

});




Cookies can be Inspected in Browser

[w ﬂ Elements Console Sources Network Timeline Profiles Resources Security Audits Ember 93 : X

» (" Frames Name A | Value Doma... | Path | Expires /... | Size HTTP Secure SameSite
{1 web sQL Fe26.2**5a0fa0a83cleaefalf 5. main. |/ | 2016-08.

I {IndexedDB
» BE Local Storage
» EE Session Storage
¥ 3 Cookies
B8 Application Cache
I 1 Cache Storage

& Service Workers




