
Sessions in Hapi

Agenda

• Simple precursor to Sessions

• Sessions via Cookies in Hapi

Sharing Information across an App

• Before server launches, ‘bind’
an array of donations to the
server object.

• Most commonly used to share
database connection
information

...
server.bind({ 
 donations: [], 
}); 
...

index.js

Sharing Information across an App

• This ‘donations’ array can
subsequently be
accessed in all handlers.

• Each handler can read/
write to this shared data
structure

• All users donations held in
effectively a global array in
memory

...
server.bind({ 
 donations: [], 
}); 
...

index.js

exports.donate = { 
 
 handler: function (request, reply) { 
 const data = request.payload;  
 this.donations.push(data);  
 reply.redirect('/report');  
 }, 
 
};

donations.js

Separating out User Donations

• Try to keep track of

• all users,

• the current user

• all donations.

...
server.bind({ 
 currentUser: {}, 
 users: {}, 
 donations: [], 
}); 
...

index.js

Registering &
Authenticating Users

exports.register = { 
 
 handler: function (request, reply) { 
 const user = request.payload;  
 this.users[user.email] = user;  
 reply.redirect('/login'); 
 }, 
 
};  
 
exports.authenticate = { 
 
 handler: function (request, reply) { 
 const user = request.payload;  
 if ((user.email in this.users) && (user.password === this.users[user.email].password)) { 
 this.currentUser = this.users[user.email];  
 reply.redirect('/home');  
 } else {  
 reply.redirect('/signup'); 
 } 
 }, 
 
};

accounts.js

• Record user object at registration

• Record current user at login

Creating & Listing
Donations

exports.donate = { 
 
 handler: function (request, reply) { 
 let data = request.payload;  
 data.donor = this.currentUser;  
 this.donations.push(data); 
 reply.redirect('/report'); 
 }, 
 
};

donations.js

• Record donation + donor
when creating donation

exports.report = { 
 
 handler: function (request, reply) { 
 reply.view('report', { 
 title: 'Donations to Date',  
 donations: this.donations,  
 }); 
 }, 
 
};

• Send all donations to the
view

donations.js

donationlist.hbs

...
<tbody>  
 {{#each donations}}  
 <tr>  
 <td> {{amount}} </td>  
 <td> {{method}} </td>  
 <td> {{donor.firstName}} {{donor.lastName}} </td>  
 </tr>  
 {{/each}} 
</tbody>
...

Summary

• Current approach - brittle and not scalable

• Server.bind to maintain global data

• Store user + donation data structures

• Revised Approach

• Migrate to more robust, cookie based session
management

• Introduce proper persistence capability (a database)

Sessions

• HTTP is described as a stateless protocol - every new request is
just as anonymous as the last.

• This sounds very unhelpful for a protocol that powers websites,
where users expect to be remembered as they go to page to page.

• Cookies to the Rescue:

• A request comes to a web application with a cookie

• using the cookie the server can look up information about the
user, either from the cookie itself or from server-side storage.

• It can then forget all about them for a while, until the next request
and the same process continues over for every request.

hapi-auth-cookie

• A Hapi Plugin to
manage cookie access
and management.

• Must be downloaded,
installed and registered
(like all plugins)

https://github.com/hapijs/hapi-auth-cookie

hapi-auth-cookie Installation & Registration

npm install command

package.json updated

Register in index.js

hapi-auth-cookie Configuration

• Set an auth ‘strategy’ before
application starts

• Specifies range or parameters,
including:

• password for securing cookie

• cookie name

• time to live (expiry)

...
server.auth.strategy('standard', 'cookie', { 
 password: 'secretpasswordnotrevealedtoanyone',  
 cookie: 'donation-cookie',  
 ttl: 24 * 60 * 60 * 1000,  
}); 
...

hapi-auth-cookie Configuration

• By default hapi-auth-cookie
will only allow the cookie to
be transferred over a
secure TLS/
SSLconnection.

• This may not be convenient
during development so you
can set the isSecure option
to false.

• Set ‘standard’ as the
default strategy for all
routes

...
server.auth.strategy('standard', 'cookie', { 
 password: 'secretpasswordnotrevealedtoanyone',  
 cookie: 'donation-cookie',  
 isSecure: false,  
 ttl: 24 * 60 * 60 * 1000,  
});

server.auth.default({  
 strategy: 'standard',  
});
 
...

Annotating Routes

• All routes are now
‘guarded’ by default,
cookie based
authentication mechanism

• Any attempt to visit a
route will be rejected
unless valid cookie
detected.

• Some routes need to be
available (to signup or
login for instance)

• These routes must
specifically disable auth
mechanism

...

server.auth.default({  
 strategy: 'standard',  
});
 
...

...
exports.signup = { 
 auth: false,  
 handler: function (request, reply) { 
 reply.view('signup', { title: 'Sign up for Donations' }); 
 }, 
 
};  
 
exports.login = { 
 auth: false,  
 handler: function (request, reply) { 
 reply.view('login', { title: 'Login to Donations' }); 
 }, 
 
};  
...

Setting the Cookie

• Set the cookie if correct user
credentials presented.

...
exports.authenticate = { 
 auth: false,  
 handler: function (request, reply) { 
 const user = request.payload;  
 if ((user.email in this.users) && (user.password === this.users[user.email].password)) { 
 request.cookieAuth.set({ 
 loggedIn: true,  
 loggedInUser: user.email,  
 }); 
 reply.redirect('/home'); 
 } else {  
 reply.redirect('/signup'); 
 } 
 },  
 
};  
...

request.cookieAuth.set({ 
 loggedIn: true,  
 loggedInUser: user.email,  
});

Reading the Cookie

• If cookie set, it can
be read back in any
handler

• We are storing
logged in users
email in this
example

• Use this email to
look up user details
in some storage
infrastructure
(database).

exports.donate = { 
 
 handler: function (request, reply) { 
 let data = request.payload;  
 const donorEmail = request.auth.credentials.loggedInUser;  
 data.donor = this.users[donorEmail]; 
 this.donations.push(data); 
 reply.redirect('/report'); 
 }, 
 
};

 const donorEmail = request.auth.credentials.loggedInUser;

request.cookieAuth.set({ 
 loggedIn: true,  
 loggedInUser: user.email,  
});

Clearing the Cookie

• Cookie deleted

• Any attempt to access
protected routes
rejected

exports.logout = { 
 auth: false,  
 handler: function (request, reply) { 
 request.cookieAuth.clear(); 
 reply.redirect('/');  
 }, 
 
};

Redirects

If route
protected, and

cookie deleted/
timeout

Redirect to login

server.auth.strategy('standard', 'cookie', { 
 password: 'secretpasswordnotrevealedtoanyone',  
 cookie: 'donation-cookie',  
 isSecure: false,  
 ttl: 24 * 60 * 60 * 1000,  
 redirectTo: '/login',  
});

Cookies can be Inspected in Browser

