
HAPI Philosophy

What is HAPI?

• hapi.js is an open source framework for building web
applications with Node.

• Can be used for building:

• Web App

• API Server

“A rich framework for building applications
and services hapi enables developers to
focus on writing reusable application logic
instead of spending time building
infrastructure.”

Web Application

• Application delivers an Conventional Web Application

• All data conveyed in HTML format

• Client is a Web Browser

API Server

• Application delivers an Application Programming Interface

• All data conveyed in JSON format

• Client are other programs : mobile, test clients, js client
apps

HAPI
&

Node

1. Client makes HTTP Request

2. Request received by Node and forwarded to api

3. Hapi authenticates user and routes request to correct function

4. Application logic executes, retrieves data from database

5. Data passed to Hapi reply function. Hapi validates, caches data.

6. Data transmitted over HTTP by node to client

Why Choose Hapi?

• Its Node

• Its Modular

• It favours Convention
over Configuration (or
Code)

Why Hapi? - its Node

• Node is strong for building APIs.

• JSON has become the de facto standard encoding for
transferring data over the web.

• Working with JSON in JavaScript is a natural choice.

• The low- level implementation details of Node’s runtime
let you scale your API to thousands of concurrent users
without using expensive hardware.

Why Hapi? - Modularity

• Hapi plugin system lets you join together isolated chunks
of applications like Lego and have them run as a single
application.

• These individual chunks or plugins can be developed,
tested and distributed (as npm packages) totally
independently, maybe by different developers or teams in
a large organisation

• Plugins also let developers create functionality to share
with the entire open- source community.

Why Hapi? - Convention over Configuration

• Configuration-over-code means that there aren’t lots of
methods to remember to perform commonly required tasks

• Instead complex behaviours are wrapped up into simple
configuration-driven APIs.

• You don’t need to start learning all these configuration
options until you really need them because sensible defaults
are always chosen for you by the framework

• All Encompassing - Highly Opinionated

1. Large Application Library with Many Components

2. Application is tightly bound to the framework and
may be challenging to use external software

Types of Framework: Monolithic

Types of Framework: MicroFramework

• Lightweight, thin wrappers.

1. Small framework library with few components

2. Application is independent of framework

3. Application relies on many 3rd party libraries

Framework Spectrum

• Highly Opinionated
frameworks require you to do
things in a predictable and
consistent way

• MicroFrameworks are often
thin wrappers around some
native capability of the
platform to offer convenient
APIs for common tasks

All Encompassing -
Highly Opinionated

Micro Frameworks
- Lightweight

e.g. Rails, Sails

e.g.Sinatra, Express

Hapi Philosophy

• Hapi threads a middle line between
offering rich functionality out of the
box while staying unimposing.

• The core library of hapi provides
only the essential features that you
will need when creating almost any
modern web application.

All Encompassing -
Highly Opinionated

Micro Frameworks
- Lightweight

e.g. Rails, Sails

e.g.Sinatra, Express

Hapi Approach

1. Small framework with few components

2. Frameworks core functionality extended with
configurable official plugins

3. Application is independent of framework

4. Application relies on 3rd party libraries

Example Hapi Application Structure

