
Node Context

Traditional Web Application Structure

Node Structure

What is Node.js	

• a complete software platform for scalable server-side
and networking applications

• open-source under the MIT license

• comes bundled with a JavaScript interpreter

• runs on Linux, Windows, Mac OS & most other major
operating systems

timeline

2009
• Created by Ryan Dahl
• Version 1 in 2009 to revolutionise web applications
• Inspired by Ruby Mongrel web server

2010 • Joyent sponsors Node.js development

2011
• First released version of Node.js available to the public
• Initial version only available for Linux.
• Microsoft partners with Joyent to provide Windows support

2012 • Complete rewrite of central libraries

...
2014

• v0.10.26 Released
• Still several improvements away from a stable v0.12 and a

finalized v1.0

• Since 2014, versions on a predictable trajectory

how it works

• Built on Chrome's V8 JavaScript runtime for easily
building fast, scalable network applications

• Uses an event-driven, non-blocking I/O model that
makes it lightweight and efficent, perfect for data-
intensive real-time applications that run across
distributed devices

overall structure

• Two major components:

• Main core, written in C and C++

• Modules, such as Libuv library and
V8 runtime engine, also written in
C++

V8 Asynchro
nous I/O

(libuv)
Even t
L o o p
(libuv)

DNS
(c-ares)

Crypto
(OpenSSL)

API

Node Bindings (socket,
http, etc)

Main Single Thread

• All requests handled by the
Main Single Thread

• API in JavaScript

• Node bindings allow for server
operations

• Relies on Google’s V8 runtime
engine

• Libuv responsible for both
asynchronous I/O & event loop

v8 runtime engine

• Just in Time compiler, written in C++

• Consists of compiler, optimizer, and garbage collector

libuv

• Responsible for Node’s asynchronous I/O operations

• Contains fixed-size thread pool

Main Components

major influences

• Heavily influenced by architecture of Unix operating
system

• Relies on a small core and layers of libraries and other
modules to facilitate I/O operations

• Built-in package manager contributes to the modularity
of Node

• Most other similar web platforms are multi-
threaded

• With each new request, heap allocation
generated

• Each request handled sequentially

Single Threaded

Event Loop

• Typically implemented using library via a blocking
call, but Node is non-blocking throughout

• Implemented using language construct &
Automatically terminated

• Tightly coupled to V8 engine

Non-blocking	 I/O
• All requests temporarily saved on heap

• Requests handled sequentially

• Can support nearly 1 million concurrent
connections

how it works

Single thread

1. HTTP	 Node.js
Request

Client
Web Server

3. Data

2. Async
Data Query

4. Response in
JSON format
via callback

Database

Node.js, acknowledges the request right away before
writing any data to the database.

a generic model

Event
LoopInitialize Run V8

IdleCreate Thread I/O OperationPerform Task

Exit

Exit

Delegate Task
Thread n

NodeJS

Main Event Loop

Stop

Advantages

• Because of its single-threaded, non-blocking scheme, Node can support nearly 1
million concurrent connections

• Asynchronous, event-based scheme allows for scalability, lower memory usage &
CPU overhead

• Can be used to implement an entire JavaScript-based web application.

• Requests are acknowledged quickly due to asynchronous nature

• Native JSON handling

• Easy RESTful services

• Speedy native bindings in C

• Due to its real-time nature, it’s possible to process files while they are being
uploaded

Best Suited For…

• REST + JSON APIs

• Backend for single-page web apps with same language
for client and server

• Quick prototyping

• Rapidly evolving applications: media sites, marketing, etc.
Chat applications

• Ideal for computing and orchestration tasks divided using
worker processes

Limitations

• Node & V8 runtime engine are tightly coupled

• Because it is single-threaded, it has a single point of
failure for all requests (low fault-tolerance)

• Not suited for CPU-bound tasks

• Not suited for Applications needing to process large
amounts of data in parallel, unless using worker
processes

