
The Essence of Node

The Essence of Node

• JavaScript on the Server

• Asynchronous Programming

• Module-driven Development

• Small Core, Vibrant Ecosystem

• The ‘Frontend Backend’

JavaScript on the Server

• there is already a large JavaScript developer community
that is building some of the world’s most exciting web
applications.

• JavaScript consistently ranks among the most popular
languages. “Developer joy” is a common theme for Node
and this largely relates to JavaScript’s approachability and
the high levels of productivity it a affords.

• JavaScript on the server with Node further establishes it as
the language of the web and its new uses on the server
are helping to shape the future of the language itself.

Asynchronous Programming I

• JavaScript was designed for the web and the browser, where
nothing is synchronous.

• Asynchronous JavaScript programs can perform many complex,
parallel tasks in the browser.

• Node takes asynchronicity to the extreme on the server, making it
the perfect choice for I/O-heavy and highly concurrent applications.

• Applications built with Node are built for predictable scalability -
design patterns adopted within Node programmes confer robust
scalability without the overhead required by complicated
synchronization mechanisms

Asynchronous Programming II

• Node requires developers to embrace a different mindset
in the form of asynchronous programming

• By treating I/O as a special class of operation, developers
must design highly performant applications by default.

• Node is single-threaded by nature, which is embraced as
a part of the application design.

Module-driven Development I

• Node is modular by nature.

• Node embraces a practice of “Throw-awayability” becoming pervasive in
the services oriented software design world - i.e. encourage developers to
think in terms of creating small services that can be easily replaced or
updated when necessary.

• By adopting a module-driven approach, Node developers can
deconstruct the functionality of large monolithic applications and redesign
them as a series of Node modules, bundled together to form a collection
of services.

• This establishes an elegant simplicity in building scalable application
functionality that improves both business and developer agility and leads
to greater code-reuse.

Module-driven Development II

• Having development teams focusing on developing
modules enables them to:

• 	 Maintain focus on essential functionality  

• 	 Better test, validate and document that functionality  

• 	 More easily share and collaborate with other teams  

Small Core, Vibrant Ecosystem

• Large monolithic applications are often subject to “mission creep”
of applications and the development environments that build them.
Over time this results in feature rich but bloated products.

• Node avoids this scenario by creating a small core of essential
functionality that is studiously defended and constantly debated by
the Node community. This pushes experimentation to the edges
and encourages a vibrant ecosystem and development culture.

• This ethos also extends to Node- style development, with
developers constantly thinking about how to keep modules small
and focused and splitting apart functionality where the “do one
thing well” rule is broken.

The Frontend Backend I

• Rich client teams who have been building exciting, dynamic
JavaScript experiences have run up against problems from
building large, monolithic structures that naturally result from
traditional top-down programming.

• The result is poor performance and scalability and frustration
for end users.

• Front end-developers must also rapidly iterate on the
customer experience to keep users engaged.

• This has lead to the growth if the ‘Frontend Backend’ pattern,
with node as a clear choice.

The Frontend Backend II

• The application frontend needs a lightweight,
dynamic back-end to deliver the scale and
response times needed.

• The Frontend Backend is architectural tier
added to a system to specifically serve
frontend resources (templates, html, css , etc.)
in front of a legacy system or API service tier.

• A frontend backend empowers frontend
teams to quickly evolve the user experience to
respond to rapidly changing conditions on the
ground – such as news items, social
happenings, and sporting or cultural events –
all while being able to think and operate in the
familiar JavaScript mindset.

