CSS Preprocessors & Semantic Ul

CSS Preprocessing languages

- A CSS preprocessor helps write maintainable, future-proof code and it will
seriously reduce the amount of CSS you have to write.

- Where these tools shine best are in large-scale user interfaces that require
huge stylesheets and many style rules.

- Two candidates:
« SASS

- LESS

SASS

%‘ INSTALL LEARN SASS BLOG DOCUMENTATION GET INVOLVED LIBSASS

CSS with superpowers

Sass is the most mature, stable, and powerful
professional grade CSS extension language in
the world.

Preprocessing

Variables > $font-stack: Helvetica, sans-serif;
Nesting $primary-color: #333;
Partials body {
. 0s - ~

Import font: 100% $font-stack;

color: $primary-color;
Mixins)
Inheritance

Operators

Preprocessing " nav {

. ul
Variables {
margin: 0;
Nesting iy padding: 0;
. list-style: none;
Partials y ’
}
Import
.. 11 display: inline-block:
Mixins { i ’
Inheritance a {
display: block:
Operators pray ’

padding: 6px 12px;

text-decoration: none;

// _reset.scss

html,
Preprocessing body,
. ul,
Variables
ol {
Nesting margin: 0;

Partials — — padding: 0;

Import ———py

Mixins

/* base.scss */
Inheritance

@import 'reset';
Operators P ;

body {
font: 100% Helvetica, sans-serif;

background-color: #efefef;

Preprocessing

Variables

Nesting @mixin border-radius($radius) {

Partials -webkit-border-radius: $radius;
-moz-border-radius: $radius;

Import -ms-border-radius: S$radius;

Mixins | border-radius: Sradius;

}
Inheritance

Operators .box { @include border-radius(10px); }

.message {
border: 1lpx solid #ccc;

padding: 10px;

Preprocessing . color: #333;
_ }
Variables
Nesting .success {
. @extend .message;
Partials
border-color: green;
Import }
Mixins
.error {
Inheritance = @extend .message;
border-color: red;
Operators)

.warning {
@extend .message;

border-color: yellow;

Preprocessing

Variables .container { width: 100%; }
Nesting
article[role="main"] {
Partials float: left;
width: 600px / 960px * 100%;
Import ’ ’ ’
}
Mixins
) aside[role="complimentary"] {
Inheritance g g

float: right;
Operators =P yidth: 300px / 960px * 100%;

LESS

{lESS} Language Features Function Reference Usage

Getting started

An overview of Less, how to download and use, exa
and more.

- Less is a CSS pre-processor, meaning that it extends
the CSS language, adding features that allow variables,
mixins, functions and many other techniques that allow
you to make CSS that is more maintainable, themable
and extendable.

Variables

Extend

Mixins

Parametric Mixins
Mixins as Functions
Passing Rulesets to Mixins
Import Directives
Import Options
Mixin Guards

CSS Guards

Loops

Merge

Parent Selectors

L ess Variables

Less Generated Css
@Qcolor : #33333;
p {
p { color : #333333;
color : @color; }
}
.demo {
.demo { background : #333333;
background : Rcolor; }
}

Less Scope

| ess

@wvar: red;

#tpage {
#header ({
@Qvar: white;
color: @var; // white

}

color : (@Qwvar;

}

Generated Css

#page {
color: #££0000;
}
#page #header ({
color: #ELfffff;

}

Less MixINs

Less Generated Css

demo-class {
color: #aaa;
font-size: 20px;

.demo-class {
color : f#aaa;
font-size : 20px;

) }

.class-A {
color : #aaa;
font-size : 20px;
background : #000;

.class-A {
.demo-class;
background : #000;

})

| ess Parametric Mixins

Less Generated Css

demo-class (@padding) {

padding : @padding; .class-A {

} padding : S5px;

background : #000;
.class-A { }

.demo-class (5px) ;
background : #000; class-B{

} padding : 8px;
}

.class-B {
.demo-class (8px) ;

}

Less Operations

Less Generated Css

#class {
color: #222222;

background-color: #bbbbbb;
height: 60%;
width: 65%;

@base: 5%;

@filler: (@base * 2;
@Qother: @base + (@filler;
@base-color : #aaa;

}

#class {

color: #888 / 4;

background-color: @base-color + #111;
height: 100% / 2 + Q@filler;

width : @Qother + 50%;

Less Functions & Loops

| ess

.generate-columns (@n, @i: 1) when (@i =< @n) {
.column-@{i} {
width: (@i * 100% / @n);
}

.generate-columns (@n, (@i + 1));

} . .column-1 {
.generate-columns (2) ; width: 50%;

}

.column-2 {
width: 100%;

}

Generated Css

Semantic Ul Sources

* Written in Less

Semantic-0Org / Semantic-Ul @ Watch~ 1,258 Y Star 27939 YFork 3,198
<> Code Issues 750 Pull requests 65 Wiki Pulse Graphs
Branch: masterv = Semantic-Ul / src / Create new file Upload files = Find file History
J jlukic Add transition fallback to progress Latest commit f725b16 14 days ago
B _site #3272 fixes comment 11 months ago
B definitions Add transition fallback to progress 14 days ago
m themes Fixes missing message var 19 days ago
[E) README.md Update README.md 2 years ago
[E) semantic.less Update semantic.less links a year ago
[E) theme.config.example Setup embed component, fix all contributors banners in src a year ago
B theme.less #3009, fix issue where theme will fail building if packaged theme doe... a year ago

README.md

Setup

v [~ semantic
v [dist

SOurce StrUCture » (3 components

» [themes

Generated i
JcC 5] semantic.css
CSS/jS) semantic.js

<> Code Issues 750 Pull requests 65 a semantic.min.css

Semantic-0Org / Semantic-Ul

3] semantic.min.js

v [src

“‘jlukic Add transition fallback to progress v B deﬁnitions

» [behaviors

Branch: masterv = Semantic-Ul / src/

B _site #3272 fixes comr I)
B definitions Add transition fall ~ B GRIERIOIE
BB themes Fixes missing me: SOurceS < D elements
E) README.md Update README. » (3 globals
B semantic.less Update semantic. D modules
B theme.config.example Setup embed con » [views
E) theme.less #3009, fix issue \ > D site
E2 README.md » [themes
Y semantic.less
Setup 3 theme.config
8 theme.less
< Built-In Tools » [tasks

From the Semantic directory you can setu B U | Id SC I’I p-t gulpfile.js

Gulp

« A task runner/
build tool for

front end Automate and enhance your workflow
developers
Easy to use Efficient
By preferring code over configuration, gulp keeps things simple Using the power of node streams, gulp gives you fast builds
and makes complex tasks manageable. that don't write intermediary files to disk.
High Quality Easy to Learn
By enforcing strict plugin guidelines, we ensure that plugins Using node best practices and maintaining a minimal API

stay simple and work as expected. surface, your build works exactly as you would imagine.

CSS-TRICKS Blog Videos Almanac Snippets = Menu

Why Gulp?

Tools like Gulp are often referred to as "build tools"
because they are tools for running the tasks for
building a website. The two most popular build tools
out there right now are Gulp and Grunt. (Chris has a
post on getting started with Grunt here). But there are
others of course. Broccoli focuses on asset compilation,
one of the most common build tool tasks.

There are already multiple articles covering the
difference between Grunt and Gulp and why you might
use one over another. You can check out this article,
this one, or this if you're interested in finding out more.
Brunch is similar in its focus on assets, and it bundles
in some of the most common other tasks like a server
and file watcher.

The main difference is how you configure a workflow
with them. Gulp configurations tend to be much
shorter and simpler when compared with Grunt. Gulp
also tends to run faster.

Let's now move on and find out how to setup a
workflow with Gulp.

G

lo) semantic.min.js

v [src

v [~ definitions
(3 behaviors

(3 collections

(] globals

>

>

» [elements
>

» [modules
» [views

» (3O site

» [themes

Y semantic.less

3 theme.config

3 theme.less

» [tasks

[&) gulpfile.js

- Gulp script is Javascript!

- List files to be compiled/
transformed + suitable steps

] FERERRRERRRERRRERRRERRRR TR R RERRRRRRRRTR
Set-up
sekckokokokkkkkskskskkkokkkkkkskokokokkokokok koK /

var
gulp = require('gulp-help')(require('gulp')),

// read user config to know what task to load
config = require('./tasks/config/user'),

// watch changes
watch = require('./tasks/watch'),

// build all files

build = require('./tasks/build'),

buildls = require('./tasks/build/javascript'),
buildCss = require('./tasks/build/css'),
buildAssets = require('./tasks/build/assets'),

// utility

clean = require('./tasks/clean'),

version = require('./tasks/version'),

// docs tasks

serveDocs = require('./tasks/docs/serve'),
buildDocs = require('./tasks/docs/build'),
/1 gL

buildRTL = require('./tasks/rtl/build'),
watchRTL = require('./tasks/rtl/watch')

/3R KRR KKKk kKKK KoK
Tasks
sorkkRkkRRRRRRRRk kKRR kR Rk koK /

gulp.task('default', false, [
'watch'

1);

gulp.task('watch', 'Watch for site/theme changes', watch);
gulp.task('build', 'Builds all files from source', build);
gulp.task('build-javascript', 'Builds all javascript from source', buildJS);
gulp.task('build-¢ss', 'Builds all ¢ss from source', buildCSS);
gulp.task('build-assets', 'Copies all assets from source', buildAssets);

gulp.task('clean', 'Clean dist folder', clean);
gulp.task('version', 'Displays current version of Semantic', version);

/%

Docs

*/

/%
Lets you serve files to a local documentation instance
https://github.com/Semantic-0Qrqg/Semantic-UI-Docs/

*/

gulp.task('serve-docs', 'Serve file changes to SUI Docs', serveDocs);
gulp.task('build-docs', 'Build all files and add to SUI Docs', buildDocs);

Building Semantic Ul

$ npm install gulp -g
$ git clone https://github.com/Semantic-Org/Semantic-Ul.git
$ cd Semantic-Ul

$ gulp build
. : [] Using gulpfile
QU|p Cgmplles the L 1 Starting 'build’...
less + |s sources Building Semantic
to ‘dist' folder C] Starting 'build-javascript’'...

ready for use

[

] Starting 'build-css'...

] Starting 'build-assets’'...
uilding assets

] Created:
Created:
Created:
Created:
Created:
Created:
Created:
Created:
Created:

L
B
L
L
L
L
L
L
L
L

https://github.com/Semantic-Org/Semantic-UI.git

Gulp Build ...

[~ src
[~ definitions
[behaviors

[collections

[elements
[globals
[modules
[views

[site

[themes

Y semantic.less

Y theme.config

3 theme.less
[tasks

[gulpfile.js

[

L
B

[
[

[
B
L
[
[
[
L
L
[
L
L

uilding

uilding

] Using gulpfile)
build'... [~ dist

] Starting
Semantic
] Starting

] Starting

] Starting
assets

1 Created:
1 Created:
1 Created:
1 Created:
1 Created:
1 Created:
1 Created:
1 Created:
] Created:

"build-javascript'... D components
'build-css'...
[themes

3] semantic.css

'build-assets’...

3] semantic.js

3] semantic.min.css

3 semantic.min.js

Customising Semantic Ul

Developing: Customization Guide

Customization Guide

= Adopting SUI to fit your needs

Introduction
Setting Global Variables

Designing for the Long Now v

Customizing Ul Elements
Using Stub Files

Adjusting Ul Variables

Designing for the Right Now v

Layout CSS
Packaged Themes

The Future of Themes

) star L 27,939

All the tools your team
needs in one place.
Slack: Where work
happens.

ads via Carbon

Introduction

Semantic provides several ways to modify Ul elements. For big projects that rely on
building a personalized brand-aware visual language, site themes allow you to modify
the underlying variables powering Semantic Ul, as well as specify alternative overriding
css. Site themes are portable between projects, and affect the compiled framework code.

For smaller projects, projects with quick deadlines, or for those who prefer not to get into
front end coding, packaged themes are great for borrowing from other open source
designs in the field.

For either project type, an important place to start customizing Semantic is the
sitevariables file, the variables file which all other variable files inherit from.

Setting Global Variables

sitevariables contains many of the most important variables for your site. Adjusting
these parameters will instantly help make your site feel less like a cookie-cutter design,
and more like your brand.

A good place to start customizing is by adjusting the fonts used in your project. Semantic
includes several variables which let you specify free fonts available on Google Fonts.

For example, you might want to specify a custom font stack for your site by adding
several superceding site theme variables in your site theme's variable file,

src/site/globals/sitevariables .

Upload Files From
Anywhere. With

Overview o (L

ads via Carbon

Creating Themes for Semantic Ul

Theming Concepts v Theming Concepts
Elements of a Theme
Global Inheritance Semantic uses an inheritance system similar to Sublime Text designed to facilitate an
Component Inheritance ecosystem of theming.
CSS Overrides
Overrides in Practice Semantic ‘ Theme @ Site
Library Defaults BB pyckage Defaults @B UscrOverrides

Semantic definitions are compiled with LESS using only simple, well adopted CSS pre-
processing features like css variables, color adjustment functions, and unit
conversions, but not language-specific features like nested rule declarations, guards, or

mix-ins.

A SCSS port is underway for those who are persnickety about which indicating character precedes
their variable declarations.

Elements of a Theme

Themes are composed of two separate files: a variable file, which has values that modify
variables for a component, and an .overrides file, which includes LESS rules which will

be included after the default css of a definition.

In the following examples, paths all refer to default project paths, these might be adjusted in your
project's semantic.json file.

rnsemantic.com/themes/overview.html#overrides-in-oractice

Unbelievable Theming

Semantic comes equipped with an intuitive inheritance system and high
level theming variables that let you have complete design freedom.

Develop your Ul once, then deploy with the same code everywhere.

4

e

Select Theme

Semantic Ul
Amazon

Google Material
GitHub
Bootstrap

Twitter

Raised
Chubby

Classic

v

n Save for Later * Rate

