
Assignment 3 specification – Inheritance, Polymorphism and Abstraction 

 

This overall assignment is worth 40% of the overall module grade.  The interview to assess your 

understanding and ability to explain of the code is very important. The interview marking will be 

used as a multiplier to determine your final mark. 

 

The Rubric for the Assignment 

Grade 
Range 

Hierarchy  
(Phase 2, 3) 

Gym Api  
 (Phase 4) 

Menu/UX  
 (Phase 1, 5) 

Testing/DX  
 (Phase 1, 6) 

Starter Member Add member/trainer 
NumberOfMembers/ 
Number of Trainers 
Get members/ 
trainers 

View and update 
members 
(member menu). 

JavaDoc.   
 
Coding and naming 
standards adhered 
to. 

Baseline Person Search members by 
name 

Member 
login/register 
(unique email 
address). 
 
UX (robust, 
intuitive, user 
friendly, etc). 

JUnit testing of 
models – full code 
coverage not 
achieved. 
 
Package structure 
adhered to. 

Good Trainer  Search members & 
trainers by email. 
 
Uses util classes to 
verify valid indexes for 
arraylists. 

Trainer 
register/login 
(unique email 
address). 
 
Trainer menu 
(top level).   
 

JUnit testing of 
models – full code 
coverage achieved. 
 
Code is DRY i.e not 
repeating code 
unnecessarily; use 
of utils defined in 
labs / lectures. 

Excellent Assessment Load/store members 
& trainers in XML.  
Uses latest 
assessment weight 
when calculating 
analytics i.e. BMI, BMI 
Category, Ideal Body 
Weight. 

Assessment 
Menu. 
 
Progress menu. 
 

Junit testing of 
GymAPI – full code 
coverage not 
achieved. 
 
 

Outstanding Premium & 
Student 
members 

Uses util classes for 
analytics methods 
(BMI, BMI category, 
ideal body weight), for 
conversion methods 
(kg->lb, m->in), etc.  

Verification of 
valid email 
address format. 
Reports menu. 
Load / Store 
implemented. 

Junit testing of 
GymAPI – full code 
coverage achieved. 
 
Use of your own util 
classes. 

 

A note on the marking of the assignment: 



 

 Minimal marks are going for constructors, accessors, and mutators as these can be 

generated in Eclipse.   We also examined them heavily in Assignment 1. 

 All methods should override and extend the overridden method, where possible. 

 Serialization should use the Xstream component we discussed in class. 

 You are permitted to use any applicable code from the Assignment 1 solution and any of our 

lab solutions.  You are also permitted to use any applicable code from your Web assignment. 

 Self-directed learning: 

 This assignment will require some self-directed learning on your part.  You should use 

the approaches and materials discussed in class, however, for some of the requirements, 

you will probably need to do some research yourself.   

Stack overflow is a very good resource for solving technical problems. 

 

 

Phase 1: Structure and Principles 

UX approach:  

 Your menu driven app should be user friendly, report progress to the user, robust, handle 

exceptions, intuitive, etc. 

 The menu system should be well tested for many different user-input scenarios e.g. case 

sensitivity, input mismatches, invalid indexes, etc.  

 

DX approach: 

 Where practicable, you should aim to write utility methods/classes located in the utils 

package for standard calculations, reading in valid data, etc.  

 Java doc all solutions. 

 Java naming and coding standards should be applied throughout the project. 

 Code should follow the DRY (Don’t Repeat Yourself) principle, where practicable. 

 Your project should be structured using packages and source directories i.e. 

 The src folder should contain three packages: 

o controllers (for MenuController and GymApi classes). 

o models (for the inheritance hierarchy classes and the assessment class). 

o utils (for the utility classes – see below for more information). 

 

 The test folder’s packages should be structured in the same manner as the src folder.  A 

test class for each class identified above should be placed in the corresponding package 

in this folder.  

 

The utils package: 

 The ScannerInput class (used in labs) would be stored in here. 

 

 Write an Analytics class that would hold the following methods: 

 public static double calculateBMI(Member member, Assessment 

assessment) 



Return the BMI for the member based on the calculation: BMI is weight divided by the 

square of the height. 

 

 public static String determineBMICategory(double bmiValue) 

Return the category the BMI belongs to, based on the following values: 

BMI less than 15(exclusive) is "VERY SEVERELY UNDERWEIGHT" 

BMI between 15 (inclusive) and 16 (exclusive) is "SEVERELY UNDERWEIGHT" 

BMI between 16 (inclusive) and 18.5 (exclusive) is "UNDERWEIGHT" 

BMI between 18.5 (inclusive) and 25(exclusive) is "NORMAL" 

BMI between 25 (inclusive) and 30 (exclusive) is "OVERWEIGHT" 

BMI between 30 (inclusive) and 35 (exclusive) is "MODERATELY OBESE" 

BMI between 35 (inclusive) and 40 (exclusive) is "SEVERELY OBESE" 

BMI greater than 40(inclusive) is "VERY SEVERELY OBESE" 

 

 

 public static boolean isIdealBodyWeight(Member member, Assessment 

assessment) 

Returns a boolean to indicate if the member has an ideal body weight based on the Devine 
formula: 

* For males, an ideal body weight is:   50 kg + 2.3 kg for each inch over 5 feet. 
* For females, an ideal body weight is: 45.5 kg + 2.3 kg for each inch over 5 feet. 
* Note:  if no gender is specified, return the result of the female calculation. 
* Note:  if the member is 5 feet or less, return 50kg for male and 45.5kg for female. 

 

 

 

Phase 2 – Inheritance, Abstraction and Polymorphism: 

Create these classes in Java to define the following inheritance hierarchy:  

 Person (abstract).  Stores email, name, address and gender.  The email is used to uniquely 

identify a person in the system.     

 Member(abstract).  Subclass of Person.  Stores a person’s height, starting weight, 

chosenPackage and a hashmap (key: date; value: assessment details) to record all the 

members progress i.e. assessments performed by trainers. 

 PremiumMember (concerete). Subclass of Member.  Stores no additional data.   

 StudentMember (concrete).  Subclass of Member.  Stores studentId and collegeName.   

 Trainer (concrete).  Subclass of Person.  Stores the trainer’s speciality.   

 

The following rules should be applied to this hierarchy: 

 The following validation rules apply to these fields; any fields not listed below indicates that 

no validation is done on the field: 

o Height is measured in metres and must be between 1 and 3 inclusive. 

o Starting Weight is measured in kgs and must be between 35 and 250. 

o The name is maximum 30 characters; any name entered should be truncated to 30 

characters.  

o The gender can be either “M” or “F”.  If it is not specified, apply a default value of 

“Unspecified”. 



 The Person class should have a String toString() method that formats the printing of the 

object state and returns it.  It’s subclasses should override the superclass method String 

toString(),  call the superclass toString method and also report on the new fields defined in 

these subclasses. 

 Each class in the hierarchy should define a constructor that initialises each instance fields 

based on user input data. 

 Each class in the hierarchy should define accessors and mutators for all instance fields. 

 

Specifics for class Person:  

 No additional functionality included; just include the accessors, mutators and constructors. 

Specifics for class Member:  

 

 public Assessment latestAssessment() 

Returns the latest assessment based on last entry (by calendar date). 

 

 public SortedSet<Date> sortedAssessmentDates() 

Returns the assessments dates sorted in date order.  Note:  you can choose to sort the 
assessment dates in any manner you wish; you do not have to stick to the SortedSet 
approach. 
 

 public abstract void chosenPackage(String chosenPackage); 

The concrete implementation of this method will be completed in Member subclasses. 
 

 

Specifics for class PremiumMember:  

 public void chosenPackage(String packageChoice)   

Provides the concrete implementation for this method.  The chosenPackage is set to the 

value passed as a parameter.  There is no validation on the entered data. 

 

Specifics for class StudentMember:  

 public void chosenPackage(String packageChoice)   

Provides the concrete implementation for this method.  The chosenPackage is set to the 

package associated with their collegeName.  If there is no package associated with their 

college, default to “Package 3”. 

 

Specifics for class Trainer:  

 No additional functionality included; just include the accessors, mutators and constructors. 

 

Phase 3 – Assessment class: 



The Assessment class is a concrete class that stores weight, chest, thigh, upperArm, waist, hips, 
comment and a Trainer that entered the member’s assessment (i.e. private Trainer 
trainer). 

 

This class just has the standard constructor, accessor and mutator method with no validation on any 

fields.  It also contains the standard toString method. 

 

Phase 4 – GymApi class: 

This is a concrete class that operates between: 

 the inheritance hierarchy classes and assessment class detailed above (phase 1 and 2) and  

 the menu controller (phase 4). 

This class stores: 

 an ArrayList of members 

 an ArrayList of trainers.   

It contains the following, self-explanatory methods: 

 public void addMember(Member member) 

 public void addTrainer(Trainer trainer) 

 public int numberOfMembers() 

 public int numberOfTrainers() 

 public ArrayList<Member> getMembers() 

 public ArrayList<Trainer> getTrainers() 

 

The class also contains these methods: 

 public boolean isValidMemberIndex(int index) 

Returns a boolean indicating if the index passed as a parameter is a valid index for the 
member’s array list.  
 

 public boolean isValidTrainerIndex(int index) 

Returns a boolean indicating if the index passed as a parameter is a valid index for the 
trainer’s array list. 
 

 public Member searchMembersByEmail(String emailEntered) 

Returns the member object that matches the email entered.  If no member matches, return 
null. 
 

 public String searchMembersByName(String nameEntered) 

Returns a list of members whose name partially or entirely matches the entered name.  If 
there are no members in the gym, return a message indicating this.  If there are members in 
the gym, but none match the name entered, return a message indicating this also.  

 

 public Person searchTrainersByEmail(String emailEntered) 

Returns the trainer object that matches the email entered.  If no trainer matches, return 
null. 

 



 public String listMembers() 

Returns a string containing all the members details in the gym.  If there are no members in 
the gym, return a message indicating this.   
 

 public String listMembersWithIdealWeight() 

Returns a string containing all the members details in the gym whose latest assessment 
weight is an ideal weight (based on the devine method).  If there are no members in the 
gym, return a message indicating this.  If there are members in the gym, but none have a 
current ideal body weight, return a message indicating this also. 
 

 public String listMembersBySpecificBMICategory(String category) 

Returns a string containing all the members details in the gym whose BMI category(based 
on the latest assessment weight) partially or entirely matches the entered category.  If there 
are no members in the gym, return a message indicating this.  If there are members in the 
gym, but none have a current BMI category matching the selected category, return a 
message indicating this also. 
 

 public String listMemberDetailsImperialAndMetric() 

List, for each member, their latest assessment weight and their height both imperially and 
metrically.  The format of the output is like so: 

      
 Joe Soap:      xx kg (xxx lbs)   x.x metres (xx inches). 
 Joan Soap:     xx kg (xxx lbs)   x.x metres (xx inches).   

 
If there are no members in the gym, the message "There are no members in the gym" 
should be returned. 

 

 public void load() throws Exception 

Read the associated XML file and pop the members and trainers into their associated array 
lists.  
 

 public void store() throws Exception 

Push the members and trainers array lists out to the associated XML file. 
 

 

 

Phase 5 – MenuController class: 

Create a driver class (MenuController) that uses the console I/O to interact with the user.  This driver 

class should create an instance of the GymApi cl ass and allow the user to navigate the system 

through a series of menus. 

The following processing is required in this menu system: 

1. On app start-up, automatically load the gym data (trainers and members) from an XML file. 

2. Ask the user do they want to login(l) or register (r). 

3. Ask the user if they are a member(m) or a trainer(t).   

a. If the user selected to login, verify that the email entered is stored in the 

appropriate arraylist i.e. the members or trainers list.  If the email doesn’t exist, 

print out “access denied” to the console and exit the program. 

b. If the user selected to register, ask the user to enter the required details for the 

member/trainer. If a user enters an email that is already used in the system (for 



either trainers/members), ask let them know it is an invalid email and ask them to 

enter a new one.  

4. Once logged in, display a trainer menu for the trainer and a member menu for the member.  

a. The trainer menu should allow the trainer to: 

i. Add a new member 

ii. List all members 

iii. Search for a member by email 

iv. Search for a member by name 

v. List members with ideal body weight 

vi. List members with a specific BMI category 

vii. Assessment sub-menu 

1. Add an assessment for a member 

2. Update comment on an assessment for a member 

viii. Reports sub-menu 

1. Specific member progress (via email search). Note: brings the user 

to the same progress sub-menu identified below 

2. Specific member progress (via name search). Note: brings the user 

to the same progress sub-menu identified below 

3. Overall members’ report 

 

b. The member menu should allow the member to: 

i. View their profile 

ii. Update their profile 

iii. Progress sub-menu  

1. View progress by weight 

2. View progress by chest measurement 

3. View progress by thigh measurement 

4. View progress by upper arm measurement 

5. View progress by waist measurement 

6. View progress by hips measurement 

5. On app exit, automatically save the gym data (trainers and members) to an XML file. 

 

Note 1:  Aside from the above requirements, the design of the menu system and the                                                      

contents you include is left open to you.  This is an important area of the assignment where you can 

demonstrate your programming skills.  Also, robustness of this menu system is an important factor 

(i.e. exception handling). 

Note 2: The following packages can be hard coded in this class into a HashMap: 

 ("Package 1", "Allowed access anytime to gym.\nFree access to all classes.  

\nAccess to all changing areas including deluxe changing rooms."); 

 ("Package 2", "Allowed access anytime to gym.\n€3 fee for all classes.  

\nAccess to all changing areas including deluxe changing rooms."); 

 ("Package 3", "Allowed access to gym at off-peak times.\n€5 fee for all 

classes.  \nNo access to deluxe changing rooms."); 

 ("WIT", "Allowed access to gym during term time.\n€4 fee for all classes.  

\nNo access to deluxe changing rooms."); 



Ideally, this data would be read in from a file, however, we can just hard code them for the purposes 

of this assignment (see extra credit phase also). 

Note 3:  The options on the progress sub-menu should ideally display the member’s progress based 

on the metric chosen (e.g. weight).  It should display the metric sorted by date and some form of 

indication as to whether the subsequent measurement was above or below the previous 

measurement. 

 

Phase 6 – Testing 

Provide JUnit testing classes for the classes in the models and controllers packages (except the Menu 

controller class).   Test methods should include: 

 test method for getters and setters 

 test method for constructor/s. 

 test methods for each other method in the class. 

Ensure that you test for both valid and invalid data-entry. You should aim for full code coverage 

here. 

 

Extra Credit 

Extra credit of up to 10% can be added onto your grade for this assignment (bringing your grade to a 

max of 100%).  Extra credit would be awarded in cases where the assignment went above and 

beyond the assignment specified above. Some examples of extra credit opportunities include (but 

are not limited to): 

 Persist (i.e. save) in both JSON and XML format.   

 Instead of hard-coding the gym packages into the MenuController class, read them in from a 

file in a format e.g. XML, JSON, etc. 

 The use of Enums (stored in the utils folder) e.g. for defining BMI categories: 

http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html. 

http://javarevisited.blogspot.ie/2011/08/enum-in-java-example-tutorial.html 

 JUnit testing of the classes/methods in the utils package.  Once again, aim for full code 

coverage in this area. 

http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
http://javarevisited.blogspot.ie/2011/08/enum-in-java-example-tutorial.html

