
More on Abstraction in Java

Produced 

by:

Mairead Meagher
Dr. Siobhán Drohan
Eamonn de Leastar

Department of Computing and Mathematics
http://www.wit.ie/

More on Interfaces



Topic List 

– Interfaces define Types.

– An Interface Example – Network V6.

– Naming Conventions for Interfaces.



22

Interfaces Define Types

• Interfaces define Types

– They define common behaviour i.e. methods 

– Can be used to promote design to a higher level of 
abstraction

– Can be used where multiple implementations of one 
abstraction are envisaged

– Implementing classes are subtypes of the interface type.

• Classes can implement one or more Interfaces as 
appropriate i.e. have more than one type.



23

Interfaces Impose Types

• If a variable is declared as 
an Interface type: 

IMammal dog;

• Then any instance of any 
class that implements that 
Interface can be assigned 
to that variable. 

IMammal dog = new Mammal();

public class Mammal implements IMammal{  
public void eat(){ 

System.out.println("Mammal eats"); 
} 

public void travel(){ 
System.out.println("Mammal travels"); 

} 
} 

interface IMammal
{ 

void eat(); 
void travel();

}



23

Reference Data Type

public class Mammal implements IMammal{  
public void eat(){ 

System.out.println("Mammal eats"); 
} 

public void travel(){ 
System.out.println("Mammal travels"); 

} 
} 

interface IMammal
{ 

void eat(); 
void travel();

}

• When you define a new 
interface, you are defining a 
new Reference Data Type. 

• You can use interface names 
anywhere you can use any other 
data type name. 

• If you define a Reference 
variable whose type is an 
interface e.g.

IMammal dog;

• any object you assign to 
it must be an instance of a class 
that implements the interface
e.g.

dog = new Mammal();

https://docs.oracle.com/javase/tutorial/java/IandI/interfaceAsType.html



Interfaces in Collections Framework



Interfaces in Collections Framework

• ArrayList implements the List interface.

• Recall this rule:
• If you define a reference variable whose type is an 

interface, any object you assign to it must be an instance of 
a class that implements the interface.

• Applying this rule to a List:

List<Product> products = new ArrayList<Product>();



Recall Network-V5

We will now refactor 
our system so that 

ArrayLists are defined 
using interfaces instead 

of concrete classes.



Network-V6

ArrayLists are in these  
classes:

• Post
• NewsFeed



Network-V6 – Post.Java

import java.util.ArrayList;
import java.util.List;

public abstract class Post 
{

private String username;  
private long timestamp;
private int likes;
private List<String> comments;

}

public Post(String author)
{

username = author;
timestamp = System.currentTimeMillis();
likes = 0;
comments = new ArrayList<String>();

}

public void setComments(List<String> comments)
{

this.comments = comments;
}

public List<String> getComments()
{

return comments;
} 



Network-V6 – NewsFeed.Java

import java.util.ArrayList;
import java.util.List;

public class NewsFeed
{

private List<Post> posts;

public NewsFeed(){
posts = new ArrayList<Post>();

}

//more code
}



Interfaces in Collections Framework



Interfaces in Collections Framework

Your code is more maintainable when you define collections like this:

• ArrayLists:
List<Product> products = new ArrayList<Product>();

• Maps:
Map<String, String> addresses = new HashMap<String, String>();

• Sets:
Set<String> words = new HashSet<String>();

Note:  Include this approach in your Assignment 2.



Interfaces in Collections Framework

Why is code more maintainable when ArrayLists are defined like:
List<Product> products = new ArrayList<Product>();

Answer:  if we decided, at a later date, that 
we wanted to use a LinkedList instead of an 
ArrayList, we only have to make minor 
changes in the class i.e.

new ArrayList<Product>();
becomes

new LinkedList<Product>();

and import java.util.LinkedList;



Topic List 

– Interfaces define Types.

– An Interface Example – Network V6.

– Naming Conventions for Interfaces.



Network-V6

We have used 
Interfaces in our code 
(for Collections) but we 
have not written an 
Interface ourselves.



Network-V7

We will write an Interface called INewsFeed that imposes a 
design contract on all classes implementing it.

When the NewsFeed class implements this interface, it will be 
forced to provide an implementation for the abstract methods 
defined in INewsFeed.



Network-V7 – INewsFeed.Java

public interface INewsFeed
{

void addPost(Post post);
void deletePost(int index);
String show();

}



Network-V7 – current NewsFeed.Java
public class NewsFeed
{

private List<Post> posts;

public NewsFeed(){
posts = new ArrayList<Post>();

}

public void addPost(Post post){
posts.add(post);

}

public String show(){ 
String str = "";
for(Post post : posts) {

str += post.display() + "\n";
}     
return str;

}
}



Network-V7 - updated NewsFeed.Java
public class NewsFeed implements INewsFeed
{  

//omitted code

public void deletePost(int index) {
posts.remove(index);

}

public String show()  {
String str = "";
// display all posts with an index number
int i = 0; 
for(Post post : posts) {

str += i + ": " + post.display() + "\n";
i++;

}     
return str;

}
}



Network-V7 – updated Driver.Java

public void deletePost(){
showPosts();
System.out.print("Enter the index number for the post you wish to delete>  ");
newsFeed.deletePost(sc.nextInt());

}

switch (option){
case 1:               

addMessagePost();
break;

case 2:
addPhotoPost();
break;

case 3:
showPosts();
break;

case 4:
deletePost();
break;

}

private int mainMenu()
{

System.out.println("1) Add a Text Post");
System.out.println("2) Add a Photo Post");       
System.out.println("3) List all Posts");
System.out.println("4) Delete a Post");
System.out.println("0) Exit");
System.out.print("==>>");
int option = sc.nextInt();
return option;

}



Topic List 

– Interfaces define Types.

– An Interface Example – Network V6.

– Naming Conventions for Interfaces.



32

Common Naming Conventions

• There are a few conventions when naming 
interfaces:
– Suffix able is often used for interfaces

• Cloneable,  Serializable, and Transferable

– Nouns are often used for implementing classes names, 
and I + noun for interfaces
• Interfaces: IColor, ICar, and IColoredCar

• Classes: Color, Car, and ColoredCar

– Nouns are often used for interfaces names, and 
noun+Impl for implementing classes
• Interfaces: Color, Car, and ColoredCar

• Classes: ColorImpl, CarImpl, and ColoredCarImpl





Department of Computing and Mathematics
http://www.wit.ie/


