JUnit Framework

Four Phase Test and Test Planning

Produced Mairead Meagher
by: Dr.Siobhan Drohan
Eamonn de Leastar

@ Waterford Institute of Technology Department of Computing and Mathematics

P INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/
=ES

Topic List

— Four Phase Test.

— Planning a more complicated Test Case.

— Excuses for not Testing.

Four Phase Test

* How do we structure our test logic to make what we
are testing obvious?

* We structure each test with four distinct phases
executed in sequence.

Setup

Exercise

Verify

Teardown

How it works

Setup We set up the test fixture (the “before” picture) so
that we are in a position to exercise the tests. This

could be objects that we need to create, values we
need to set, other methods we need to call, etc.

Exercise We interact with the system we are testing.

Verify We do whatever is necessary to determine whether
the expected outcome has been obtained.

Teardown | We tear down the test fixture to put the world back
into the state in which we found it.

NERE [J] *DVDTest.java &3

import static org.junit.Assert.*;
import org.junit.After;

import org.junit.Before;

import org.junit.Test;

public class DVDTest {
private DVD dvdl, dvd2, dwvd3, dvd4;
@Before

public void setUp(){
dwvdl = new DVD("The Hcbbit({Director)");

Setup

J/title with 28 characters
J/title with 19 characters
J/title with 21 characters

Teardown

Exercise

dvd2 = new DVD("The Steve Jobs Film");
dvd3 = new DVD({"Avatar: Directors Cut");
dvdd = new DVD();

¥

@I':".'FtE"

{pub]ic void tearDown(){
¥
@Test

public void testConstructors(){

Verify

agssertEquals(null, dvd4.getTitle());
¥

@Test
public void testGetTitle(){

y

assertEquals("The Hobbit(Directeor)", dwvdl.getTitle());
agssertEquals("The Steve Jobs Film", dwd2.getTitle());
assertEquals("Avatar: Directors Cu", dvd3.getTitle());

assertEquals("The Hobbit(Directeor)", dwvdl.getTitle());
agssertEquals("The Steve Jobs Film", dwd2.getTitle());

Topic List

— Four Phase Test.

— Planning a more complicated Test Case.

— Excuses for not Testing.

Planning JUnit Tests

 Method to test: A static method designed to find the largest
number in a list of numbers.

* The following tests would seem to make sense:

- [7,8,912>9 public static int largest (int[] list)
_ [8,9,7]>9 {
~[9,7,8]>9 }

— [supplied test data] = expected result

More Test Data + First Implementation

e Already have this data:
« [7,8,9]->9
 [8,9,7]->9
* [9,7,8]->9

 What about this set of values:
 [7,9,8,9]->9
e [1]1 >1
e [-9,-8,-7]->-7

public static int largest (int[] list)

{

int index;
iInt max = Integer. MAX_VALUE;

for (index = 0; index < list.length - 1; index++)
{
If (list[index] > max)
{
max = list[index];
}
}

return max;

}

Writing the Test

e This is a TestCase import static org.junit.Assert.*;
called TestLargest. import org.junit.Test;

public class TestLargest

* It has one Unit Test - {

to ver|.fy the @Test

behaviour of the public void testOrder ()

largest method. {
int[] arr = new int[3];
arr[0] = 8;
arr[1] =9;
arr[2] =7,
assertEquals(9, Largest.largest(arr));

}

Running the Test

 Why did it return
such a huge
number instead of
our 97

e Where could that
very large number
have come from?

(& Package Explorer il JUnit &3 = 0O

{!’{Fﬂﬂcg@'—ﬁl%% B~ -

Finished after 0.021 seconds

Runs: 1/ B Errors: 0 B Failures: 1

4 EE TestlLargest [Runner: JUnit 4] (0.017 s)
gl testOrder (0.017 5)

_..

—_ . T
= Failure Trace =

JE java.lang.AssertionErrorn expected:<9> but was:<2147453647 >
= at TestLargest.testOrder(TestLargest.java:14)

10

Bug

* First line should
initialize max to
zero, not
MAX_VALUE.

|:$ Packag [Tg Hierarc [‘C.Navigat [D'L' Junit &3 . — 8

Finished after 0.005 secon ds =
BE] ._.: i"&
Runs: 1/1 B Errors: 0 B Failures: 0
¥ g TestLargest [Runner: JUnit 3] (0.000 s)

rel testOrder (0.000 s)

public static int largest (int[] list)

{
//int index, max = Integer.MAX_VALUE;

int index, max = 0;

for (index = 0; index < list.length - 1; index++)

{
if (list[index] > max)
{
max = list[index];
}
}

return max;

}

11

Further Tests

 What happens when the largest number appears in different
places in the list - first or last, and somewhere in the middle?
— Bugs most often show up at the “edges”.
— In this case, edges occur when the largest number is at the
start or end of the array that we pass in.

* Aggregate into a single unit test:

@Test

public void testOrder ()

{
assertEquals(9, Largest.largest(new int[] {9, 8, 7 }));
assertkEquals(9, Largest.largest(new int[] { 8,9, 7 }));
assertEquals(9, Largest.largest(new int[] {7, 8,9 }));

}

12

Package Explorer gy JUnit 23 = 0
L 4B QR B~ -

Finished after 0.015 seconds

3
Runs: 171 B Errors: 0 B Failures: 1 4 $ub1ic class Testlargest
5
I - st
7 public woid testOrder ()
4 EE TestLargest [Runner: JUnit 4] (0,000 s 8 {
ﬂtestﬂrder(ﬂ.ﬂﬂﬂ 5) g assertEquals(9, Largest.largest({new int[] { 9, 8, 7 }));
18 assertEgual s El, Larest.Lar‘est new imt g, 9, 7 F
11 7 9
12
13
14 /o @Test
15 // public void testOrder ()
1 i
17 /7 int[] acc = new intl31;
18 arr[@] = 8;
Failure Trace ~=[Ef 19 i arcf1] = 9;

[J] Largest.java [J] Testlargest,java &2

1= import static org.junit.Assert.®;
2 import org.junit.Test;

java.lang. AsserticnErron expected:<9> but wasi<8>
at TestLargest.testCOrder(TestLargest.java:1ll)

.= 1
1=

Failure + Fix

public static int largest (int[] list)
{
Int index, max = 0;
/[for (index = 0; index < list.length - 1; index++)
for (index = 0; index < list.length; index++)
{
If (listlindex] > max)
{
max = list[index];
}
}

return max;

}

Further Boundary Conditions

* Now exercising multiple tests

@Test
public void testDups ()

{
}

@Test
public void testOne ()

{
asserteEquals(1, Largest.largest(new int[] { 1 }));
}

assertEquals(9, Largest.largest(new int[] {9, 7, 9, 8 }));

{% Package Explorer gfu JUnit 32 = O

g® &1 BE| @ B~ -

Finished after 0.013 seconds

Runs: 373 B Errors: 0 B Failures: 0

4 F_;| Testlargest [Runner: JUnit 4] (0.000 <)
gl testOne (0.000 s)
gE] testOrder (0.000 5)
g testDups (0.000 5)

Failure on testNegative

& Package Explorer ‘g JUnit 23 = B8 [J] Largest.java [J] TestLargestjava i3
S LB QREEY v | 12)
Finished after 0.015 seconds 12
la= @Test
Runs: 474 B Errors: 0 B Failures: 1 15 public woid testDups ()
16 !
I, | 1Y assertfquals(9, Largest.largest(new int[] { 9, 7, 9, 8 }));
18 }
4 EE TestLargest [Runner: JUnit 4] (0.001 <) 19
tE] testOne (0,000 s) 20= @Test
£ testOrder (0.000 <) 21 public woid testOne ()
; 1
E testDups I:_ﬂ'ﬂm) assertEquals(l, Largest.lorgest(new int[] { 1 }));
g testMegative (0.001 s) }
@Test
public wvoid testMegative ()
1
= Failure Trace iGI =S
JE java.lang.AssertionError expected:<-7> but was:<0= ¥
= at TestLargest.testMNegative(TestLargest.java:30)

15

fix testNegative

Choosing O to
initialize max was
a bad idea;

Should have been
MIN VALUE, so as
to be less than all
negative
numbers as well.

public static int largest (int[] list)

{

}

//int index, max = 0;
Int index = 0O;
int max = Integer.MIN_VALUE;

for (index = 0; index < list.length; index++)

{
If (listlindex] > max)
{
max = list[index];
}
}

return max;

16

Is there a better approach for setting the max

value?

Maybe instead of
the MIN VALUE,
we set max to be
the first element
in the list array.

Would that work?

public static int largest (int[] list)

{

}

//int index, max = 0;
Int index = 0O;
int max = list[0];

for (index = 0; index < list.length; index++)

{

If (listlindex] > max)
{
max = list[index];
}
}

return max;

17

Yes and this is the preferred approach!

@ Package Explorer H‘ﬁJUnit &

" oIRE QB W~ ¥

Finished after 0,198 seconds

Runs: 4/4 B Errors: 10 B Failures: 0

d E| TestLargest [Runner: JUnit 4] (0.008 s)
g testOne (0.008 5)
e testOrder (0.000 s)
e testDups (0.000 <)
e testMegative (0.000 s)

[J] *Largestjava &2

1
2 public class Largest {

3

4= public static int largest (int[] list)

s

6 int index = @;

7 fnt max = list[@];

i
9 for (index = @; index < list.length; index++)
1@ I

11 if (list[index] > max)

12 r

13 max = list[index];

14 }

15 1

17 return max;
18 1

Topic List

— Four Phase Test.

— Planning a more complicated Test Case.

— Excuses for not Testing.

Excuses for not Testing (1)

e [t takes too much time to write the tests:

)

— The trade-off is not “test now” versus “test later’

— It's linear work now versus exponential work and
complexity trying to fix and rework at the end.

PAY-AS-YOU-GO SINGLE TEST PHASE

| III |
Tilﬂe - I|I |

Productivity —
| |

Productivity —
| |
I |

Time —

20

Excuses for not Testing (2)

* ‘It takes too long to run the tests”
— Separate out the longer-running tests from the short ones.

— Only run the long tests once a day, or once every few days as
appropriate, and run the shorter tests constantly.

* “It's not developers job to test his/her code”
— Integral part of developer job is to create working code.
 “But it compiles!”

— Compiler's blessing is a pretty shallow compliment.

21

Any
Questions?

@ O®

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http-//
creativecommons.org/licenses/by-nc/3.0/

Waterford Institute of Technology Department of Computing and Mathematics
INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/

