
JUnit Framework

Produced

by:

Mairead Meagher
Dr. Siobhán Drohan
Eamonn de Leastar

Department of Computing and Mathematics
http://www.wit.ie/

Four Phase Test and Test Planning

Topic List

– Four Phase Test.

– Planning a more complicated Test Case.

– Excuses for not Testing.

Four Phase Test

• How do we structure our test logic to make what we
are testing obvious?

• We structure each test with four distinct phases
executed in sequence.

3

Setup

Exercise

Verify

Teardown

How it works

4

Setup We set up the test fixture (the “before” picture) so
that we are in a position to exercise the tests. This
could be objects that we need to create, values we
need to set, other methods we need to call, etc.

Exercise We interact with the system we are testing.

Verify We do whatever is necessary to determine whether
the expected outcome has been obtained.

Teardown We tear down the test fixture to put the world back
into the state in which we found it.

Setup

Verify

Exercise Teardown

Topic List

– Four Phase Test.

– Planning a more complicated Test Case.

– Excuses for not Testing.

Planning JUnit Tests

• Method to test: A static method designed to find the largest
number in a list of numbers.

• The following tests would seem to make sense:

– [7, 8, 9]  9

– [8, 9, 7]  9

– [9, 7, 8]  9

– [supplied test data]  expected result

7

 public static int largest (int[] list)

 {

 ...

 }

More Test Data + First Implementation

• Already have this data:

• [7, 8, 9] -> 9

• [8, 9, 7] -> 9

• [9, 7, 8] -> 9

• What about this set of values:

• [7, 9, 8, 9] -> 9

• [1] -> 1

• [-9, -8, -7] -> -7

8

 public static int largest (int[] list)

 {

 int index;

 int max = Integer.MAX_VALUE;

 for (index = 0; index < list.length - 1; index++)

 {

 if (list[index] > max)

 {

 max = list[index];

 }

 }

 return max;

 }

Writing the Test

• This is a TestCase
called TestLargest.

• It has one Unit Test -
to verify the
behaviour of the
largest method.

9

import static org.junit.Assert.*;
import org.junit.Test;

public class TestLargest
{

 @Test
 public void testOrder ()
 {
 int[] arr = new int[3];
 arr[0] = 8;
 arr[1] = 9;
 arr[2] = 7;
 assertEquals(9, Largest.largest(arr));
 }
}

Running the Test

• Why did it return
such a huge
number instead of
our 9?

• Where could that
very large number
have come from?

10

Bug

• First line should
initialize max to
zero, not
MAX_VALUE.

11

 public static int largest (int[] list)
 {
 //int index, max = Integer.MAX_VALUE;
 int index, max = 0;

 for (index = 0; index < list.length - 1; index++)
 {
 if (list[index] > max)
 {
 max = list[index];
 }
 }
 return max;
 }

Further Tests

• What happens when the largest number appears in different
places in the list - first or last, and somewhere in the middle?
– Bugs most often show up at the “edges”.
– In this case, edges occur when the largest number is at the

start or end of the array that we pass in.

• Aggregate into a single unit test:

12

 @Test
 public void testOrder ()
 {
 assertEquals(9, Largest.largest(new int[] { 9, 8, 7 }));
 assertEquals(9, Largest.largest(new int[] { 8, 9, 7 }));
 assertEquals(9, Largest.largest(new int[] { 7, 8, 9 }));
 }

Failure + Fix

13

 public static int largest (int[] list)

 {

 int index, max = 0;

 //for (index = 0; index < list.length - 1; index++)

 for (index = 0; index < list.length; index++)

 {

 if (list[index] > max)

 {

 max = list[index];

 }

 }

 return max;

 }

Further Boundary Conditions

• Now exercising multiple tests

14

 @Test

 public void testDups ()

 {

 assertEquals(9, Largest.largest(new int[] { 9, 7, 9, 8 }));

 }

 @Test

 public void testOne ()

 {

 assertEquals(1, Largest.largest(new int[] { 1 }));

 }

Failure on testNegative

15

fix testNegative

• Choosing 0 to
initialize max was
a bad idea;

• Should have been
MIN VALUE, so as
to be less than all
negative
numbers as well.

16

 public static int largest (int[] list)

 {

 //int index, max = 0;

 int index = 0;

 int max = Integer.MIN_VALUE;

 for (index = 0; index < list.length; index++)

 {

 if (list[index] > max)

 {

 max = list[index];

 }

 }

 return max;

 }

Is there a better approach for setting the max
value?

• Maybe instead of
the MIN VALUE,
we set max to be
the first element
in the list array.

• Would that work?

17

 public static int largest (int[] list)

 {

 //int index, max = 0;

 int index = 0;

 int max = list[0];

 for (index = 0; index < list.length; index++)

 {

 if (list[index] > max)

 {

 max = list[index];

 }

 }

 return max;

 }

Yes and this is the preferred approach!

Topic List

– Four Phase Test.

– Planning a more complicated Test Case.

– Excuses for not Testing.

Excuses for not Testing (1)

• It takes too much time to write the tests:

– The trade-off is not “test now” versus “test later”

– It's linear work now versus exponential work and
complexity trying to fix and rework at the end.

20

Excuses for not Testing (2)

• “It takes too long to run the tests”

– Separate out the longer-running tests from the short ones.

– Only run the long tests once a day, or once every few days as
appropriate, and run the shorter tests constantly.

• “It's not developers job to test his/her code”

– Integral part of developer job is to create working code.

• “But it compiles!”

– Compiler's blessing is a pretty shallow compliment.

21

Department of Computing and Mathematics
http://www.wit.ie/

