
Handling User Input

Produced

by:

Dr. Siobhán Drohan

Department of Computing and Mathematics
http://www.wit.ie/

Packages, Utilities, Parsing & Wrappers

Recap of making
ShopV5.0 robust

ShopV5.0 – making our app robust

What could cause a runtime exception here?

ShopV5.0 – making our app robust

ShopV5.0 – making our app robust

nextInt() and
nextDouble() are

now exception
handled!

nextInt() and
nextDouble() are

now exception
handled!

ShopV5.0 – making our app robust

• But what about these int reads?

• Do I have to repeat the same code here?

• What happens if I add more int reads?

ShopV5.0 – making our app robust

• In order to have
DRY code, we
should really
write a private
helper/utility
method that can
validate our int
input.

• How would we
write it?

ShopV5.0 – making our app robust

For this new
method:

• We need to pass
in a “prompt”
string to be
printed to the
console.

• And return a valid
int.

ShopV5.0 – making our app robust

Here we are
calling the new
helper method
to read a valid

int.

And again, we
are calling the

new helper
method to
read a valid

int.

ShopV5.0 – making our app robust

Lets write a
helper method
now to read a
valid double…

Using packages and utilities

Developing ShopV6.0

ShopV5.0

• MenuController has these two utility methods:

ShopV5.0

• MenuController has these two utility methods:

Do you think these
methods could be
used in another app?

ShopV6.0 – utilities and packages

• In the next few slides,
we will remove these
methods from the
MenuController class
and put them into a
separate “utility” class.

• As our app is getting
larger, we will start
using “packages” to
structure our app.

ShopV6.0 – utilities and packages

• Create a new app called ShopV6.0.

• Right-click on the src folder and select New Package.
Enter “models” as the package name.

• Create two more packages: “controllers” and “utils”.

ShopV6.0 – utilities and packages

Copy the ShopV5.0 files into the
ShopV6.0 project to the locations
specified in the screen shot below.

When we have copied all the
existing code to this new format,
you can see we have errors!

ShopV6.0 – utilities and packages

The Product class
can’t be found by
MenuController.

ShopV6.0 – utilities and packages

The Product class
can’t be found by
Store.

ShopV6.0 – utilities and packages

import ‘Product’ (models)
in both classes.

ShopV6.0 – utilities and packages

• The errors are
now gone.

• Test the app to
make sure it is
running as
expected.

ShopV6.0 – utilities and packages

• In the utils package, create a new class called
ScannerInput.

• Cut the validNextDouble and validNextInt methods from
MenuController and paste them into ScannerInput.

• Change the accessor modifier for these methods from
private to public. Make each method static.

• Add a local Scanner object for each method and import
the Scanner class.

Creating our first utility class…

Creating our
first utility
class…

ShopV6.0 – utilities and packages

Calling the methods in our first utility class…

MenuController can’t find our new methods…

ShopV6.0 – utilities and packages

Calling the methods in our first utility class…

import static utils.ScannerInput.*;

ShopV6.0 – utilities and packages

• When testing the app, you might notice that
our dummy reads for emptying the buffer are
now causing a problem!

• We can get rid of these now and, as we are
creating a new Scanner object for each int and
double read, we don’t have to worry about
emptying our buffers anymore!

Wrappers and Parsing

Another approach for validating
input in ShopV6.0

Another approach to validating input

• Currently, our validation of int input is as
follows:

Another approach to validating input

• We can use wrapper classes and parsing for
validating input:

Wrapper classes

• Normally, when we work with Numbers, we
use primitive data types such as byte, int,
long, double, etc.

• However, in development, we come across
situations where we need to use objects
instead of primitive data types.

• In order to achieve this, Java
provides wrapper classes.

https://www.tutorialspoint.com/java/java_numbers.htm

https://www.tutorialspoint.com/java/java_numbers.htm

Wrapper classes

• All the wrapper classes (Integer, Long, Byte,
Double, Float, Short) are subclasses of the
abstract class Number.

https://www.tutorialspoint.com/java/java_numbers.htm

https://www.tutorialspoint.com/java/java_numbers.htm

Wrapper classes

• The object of the wrapper class contains or
wraps its respective primitive data type.

• Converting primitive data types into object is
called autoboxing, and this is taken care by
the compiler.

• Therefore, while using a wrapper class you just
need to pass the value of the primitive data
type to the constructor of the Wrapper class.

https://www.tutorialspoint.com/java/java_numbers.htm

https://www.tutorialspoint.com/java/java_numbers.htm

Wrapper classes

• The Wrapper object will be converted back to
a primitive data type, and this process is called
unboxing.

• The Number class is part of the java.lang
package.

https://www.tutorialspoint.com/java/java_numbers.htm

https://www.tutorialspoint.com/java/java_numbers.htm

Wrapper classes – boxing/unboxing

https://www.tutorialspoint.com/java/java_numbers.htm

public class Test {
public static void main(String args[]) {

Integer x = 5; // boxes int to an Integer object
x = x + 10; // unboxes the Integer to an int
System.out.println(x); //prints 15 to console

}
}

https://www.tutorialspoint.com/java/java_numbers.htm

Parsing

Parsing

Department of Computing and Mathematics
http://www.wit.ie/

