
More Sophisticated Behaviour

Produced

by:

Dr. Siobhán Drohan
Mairead Meagher
Based on Ch. 5, Objects First with Java - A Practical Introduction using
BlueJ, © David J. Barnes, Michael Kölling

Department of Computing and Mathematics
http://www.wit.ie/

Technical Support System V3.0

Topic List

• Recap: Technical Support System V2

• Technical Support System V3
– Overview of the System.

– Responder class: starting to generate a related
response:
• ArrayList

• Map and HashMap

– InputReader class: Tokenizing Strings:
• Set and HashSet

– Responder class: finishing the class.

– SupportSystem class: a small change.

Technical Support System V2

• A console based, textual dialog system.

• In this version, the system providesd a random response
from a list of pre-defined responses e.g.:

– "That sounds interesting. Tell me more..."
– "I need a bit more information on that."
– "Have you checked that you do not have a dll conflict?"
– "That is explained in the manual. Have you read the manual?“
– " That's not a bug, it's a feature!"
– "Could you elaborate on that?“
– etc.

Technical Support System V2

Class Diagram V2

Topic List

• Recap: Technical Support System V2

• Technical Support System V3
– Overview of the System.

– Responder class: starting to generate a related
response:
• ArrayList

• Map and HashMap

– InputReader class: Tokenizing Strings:
• Set and HashSet

– Responder class: finishing the class.

– SupportSystem class: a small change.

Technical Support System V3

• A console based, textual dialog system.

• Based on the user input, the system provides
a context-sensitive, generated response from
a list of pre-defined responses. If the system
cannot find a suitable generated response, it
returns a random one.

Technical Support System V3

Topic List

• Recap: Technical Support System V2

• Technical Support System V3
– Overview of the System.

– Responder class: starting to generate a related
response:
• ArrayList

• Map and HashMap

– InputReader class: Tokenizing Strings:
• Set and HashSet

– Responder class: finishing the class.

– SupportSystem class: a small change.

How do we influence the generated response?

• What if we had a set of words that are likely to occur
in a typical question?

• What if we then associated these words with
particular responses?

• Then, if the input from the user contains one of our
known words, generate a related response!

ArrayList

• Can we use an ArrayList for this purpose?

• Will it let us store “key=value” pairs?

• No! We need a different data structure.

• A Map will store “key=value” pairs though!

Topic List

• Recap: Technical Support System V2

• Technical Support System V3
– Overview of the System.

– Responder class: starting to generate a related
response:
• ArrayList

• Map and HashMap

– InputReader class: Tokenizing Strings:
• Set and HashSet

– Responder class: finishing the class.

– SupportSystem class: a small change.

Maps

• Maps are collections that contain pairs of
values.

• Pairs consist of a key and a value.

• Lookup works by supplying a key, and
retrieving a value.

• An example: a telephone book...use the name
to look up a phone number.

Using maps

• A map with Strings as keys and values.

"Charles Nguyen"

:HashMap

"(531) 9392 4587"

"Lisa Jones" "(402) 4536 4674"

"William H. Smith" "(998) 5488 0123"

ArrayList Vs Map

• In an ArrayList each entry stores one object
whereas in a Map, each entry has a pair of
objects (key=value).

• In ArrayList, you use an integer index to look
up the object, whereas in a Map, you use the
key object to look up the value object.

More on Map

• Looking up a value associated with a key is easy!

• However, reverse lookup (finding a key for a value) is
not so easy.

• Ideal for one-way lookup using the key.

• A map cannot contain duplicate keys; each key can
map to at most one value.

• We will use the HashMap class.

HashMap Methods

Using HashMap

HashMap <String, String> phoneBook = new HashMap<String, String>();

phoneBook.put("Charles Nguyen", "(531) 9392 4587");

phoneBook.put("Lisa Jones", "(402) 4536 4674");

phoneBook.put("William H. Smith", "(998) 5488 0123");

String phoneNumber = phoneBook.get("Lisa Jones");

System.out.println(phoneNumber);

HashMap in Tech Support System V3

In the Responder class, we will now use HashMap to store
“Key-Value” pairs for context-sensitive responses e.g.

Key Value

windows This is a known bug to do with the Windows operating system. Please
report it to Microsoft. There is nothing we can do about this.

slow I think this has to do with your hardware. Upgrading your processor
should solve all performance problems. Have you got a problem with
our software?

bug Well, you know, all software has some bugs. But our software
engineers are working very hard to fix them. Can you describe the
problem a bit further?

performance Performance was quite adequate in all our tests. Are you running any
other processes in the background?

HashMap in Tech Support System V3

• Whenever someone enters the word “crashes”, we can look
up and print the attached response.

• Lets look at the HashMap code in the Responder class!

responseMap.put("crashes", "Well, it never crashes on our
system. It must have something\n" + "to do with your system.
Tell me more about your configuration.");

import java.util.HashMap;
import java.util.ArrayList;
import java.util.Random;

public class Responder
{

// Used to map key words to responses.
private HashMap<String, String> responseMap;
// Default responses to use if we don't recognise a word.
private ArrayList<String> defaultResponses;
private Random randomGenerator;

public Responder()
{

responseMap = new HashMap<String, String>();
fillResponseMap();
defaultResponses = new ArrayList<String>();
fillDefaultResponses();
randomGenerator = new Random();

}

V3.0 Responder
changes (in red)

private void fillDefaultResponses() {
defaultResponses.add("That sounds odd. Could you describe that problem in more detail?");
defaultResponses.add("No other customer has ever complained about this before. \n" +

"What is your system configuration?");
defaultResponses.add("That sounds interesting. Tell me more...");
defaultResponses.add("I need a bit more information on that.");
defaultResponses.add("Have you checked that you do not have a dll conflict?");
defaultResponses.add("That is explained in the manual. Have you read the manual?");
defaultResponses.add("Your description is a bit wishy-washy. Have you got an expert\n" +

"there with you who could describe this more precisely?");
defaultResponses.add("That's not a bug, it's a feature!");
defaultResponses.add("Could you elaborate on that?");

}

private String pickDefaultResponse()
{

// Pick a random number for the index in the default response list.
// The number will be between 0 (inclusive) and the size of the list (exclusive).
int index = randomGenerator.nextInt(defaultResponses.size());
return defaultResponses.get(index);

}

V3.0 Responder changes (in red)

private void fillResponseMap()
{

responseMap.put("crash",
"Well, it never crashes on our system. It must have something\n" +
"to do with your system. Tell me more about your configuration.");

responseMap.put("crashes",
"Well, it never crashes on our system. It must have something\n" +
"to do with your system. Tell me more about your configuration.");

responseMap.put("slow",
"I think this has to do with your hardware. Upgrading your processor\n" +
"should solve all performance problems. Have you got a problem with\n" +
"our software?");

responseMap.put("performance",
"Performance was quite adequate in all our tests. Are you running\n" +
"any other processes in the background?");

responseMap.put("bug",
"Well, you know, all software has some bugs. But our software engineers\n" +
"are working very hard to fix them. Can you describe the problem a bit\n" +
"further?");

responseMap.put("buggy",
"Well, you know, all software has some bugs. But our software engineers\n" +
"are working very hard to fix them. Can you describe the problem a bit\n" +
"further?");

responseMap.put("windows",
"This is a known bug to do with the Windows operating system. Please\n" +
"report it to Microsoft. There is nothing we can do about this.");

// and so on…
}

V3.0 Responder changes (in red)

Topic List

• Recap: Technical Support System V2

• Technical Support System V3
– Overview of the System.

– Responder class: starting to generate a related
response:
• ArrayList

• Map and HashMap

– InputReader class: Tokenizing Strings:
• Set and HashSet

– Responder class: finishing the class.

– SupportSystem class: a small change.

Tokenizing Strings

• We have a HashMap containing a series words with
appropriate responses.

• Now we need to search the String of words the user
entered on the console to see if they typed in any of the
words stored in the HashMap.

• We need to “split” the String of words entered by the user
into individual words and store them in a collection (e.g.
Array) Tokenizing Strings.

• We need a new data structure for this type of data.

Set

• A Set is a collection that stores each individual
element at most once (i.e. unique elements).

• It does not maintain any specific order.

• The coding for Set is very similar to ArrayList
coding.

Using sets

import java.util.HashSet;

import java.util.Iterator;

...

HashSet<String> mySet = new HashSet<String>();

mySet.add("one");

mySet.add("two");

mySet.add("three");

Iterator<String> it = mySet.iterator();

while(it.hasNext()) {

call it.next() to get the next object

do something with that object

}

Compare this

to ArrayList

code!

What is the Difference between Set and List?

List (e.g. ArrayList):
• keeps all elements entered in the desired order,

• provides access to elements by index

• can contain the same element multiple times.

Set (e.g. HashSet):
• does not maintain any specific order

• ensures each element is in the set at most once (entering an
element a second time has no effect).

Returning to Tokenizing Strings

InputReader class

//V2 Code
import java.util.Scanner;

public class InputReader{

Scanner input;

public InputReader(){
input = new Scanner(System.in);

}

/**
* Read a line of text from standard input (the text terminal),
* and return it as a String.
*
* @return A String typed by the user.
*/

public String getInput() {
System.out.print("> "); // print prompt
String inputLine = input.nextLine().trim().toLowerCase();
return inputLine;

}
}

This class
will be

changed to
split the

input into a
primitive
array of
Strings.

//V3 Code
import java.util.Scanner;
public class InputReader{

Scanner input;

public InputReader(){
input = new Scanner(System.in);

}

public HashSet<String> getInput()
{

System.out.print("> "); // print prompt
String inputLine = input.nextLine().trim().toLowerCase();

String[] wordArray = inputLine.split(" "); // split at spaces

// add words from array into hashset
HashSet<String> words = new HashSet<String>();
for(String word : wordArray) {

words.add(word);
}
return words;

}
}

Changes for
V3

Topic List

• Recap: Technical Support System V2

• Technical Support System V3
– Overview of the System.

– Responder class: starting to generate a related
response:
• ArrayList

• Map and HashMap

– InputReader class: Tokenizing Strings:
• Set and HashSet

– Responder class: finishing the class.

– SupportSystem class: a small change.

import java.util.HashMap;
import java.util.HashSet;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.Random;

public class Responder
{

// Used to map key words to responses.
private HashMap<String, String> responseMap;
// Default responses to use if we don't recognise a word.
private ArrayList<String> defaultResponses;
private Random randomGenerator;

public Responder()
{

responseMap = new HashMap<String, String>();
fillResponseMap();
defaultResponses = new ArrayList<String>();
fillDefaultResponses();
randomGenerator = new Random();

}

V3.0 Responder
MORE changes (in red)
to handle a HashSet of
Strings passed into the

generateResponse
method.

public String generateResponse(HashSet<String> words)
{

Iterator<String> it = words.iterator();
while(it.hasNext()) {

String word = it.next();
String response = responseMap.get(word);
if(response != null) {

return response;
}

}
// If we get here, none of the words from the input line were recognized.
// In this case we pick one of our default responses (what we say when
// we cannot think of anything else to say...)
return pickDefaultResponse();

}

V3.0 Responder
MORE changes (in red)
to handle a HashSet of
Strings passed into the

generateResponse
method.

Topic List

• Recap: Technical Support System V2

• Technical Support System V3
– Overview of the System.

– Responder class: starting to generate a related
response:
• ArrayList

• Map and HashMap

– InputReader class: Tokenizing Strings:
• Set and HashSet

– Responder class: finishing the class.

– SupportSystem class: a small change.

//V2 code
public class SupportSystem
{

private InputReader reader;
private Responder responder;

public SupportSystem() {
reader = new InputReader();
responder = new Responder();

}
public static void main(String[] argvs){

SupportSystem app = new SupportSystem();
app.start();

}

public void start(){
printWelcome();
String input = reader.getInput();
while(! input.startsWith("bye")) {

String response = responder.generateResponse();
System.out.println(response);
input = reader.getInput();

}
printGoodbye();

}

Slight change
will be made in

this class,
mainly in the

start() method.

//V3 code
public class SupportSystem
{

private InputReader reader;
private Responder responder;

public SupportSystem() {
reader = new InputReader();
responder = new Responder();

}
public static void main(String[] argvs){

SupportSystem app = new SupportSystem();
app.startSupport();

}

public void startSupport(){
printWelcome();
HashSet<String> input = reader.getInput();
while(!input.contains("bye")) {

String response = responder.generateResponse(input);
System.out.println(response);
input = reader.getInput();

}
printGoodbye();

}

Use the
HashSet

and add the
relevant
import

statements
at the top!

Department of Computing and Mathematics
http://www.wit.ie/

