
More Sophisticated Behaviour

Produced

by:

Dr. Siobhán Drohan
Mairead Meagher
Based on Ch. 5, Objects First with Java - A Practical Introduction using
BlueJ, © David J. Barnes, Michael Kölling

Department of Computing and Mathematics
http://www.wit.ie/

Technical Support System V2.0

Topic List

• Recap: Technical Support System V1

• Technical Support System V2

– Overview of the System

– Responder class

• Random

Technical Support System V1

• A console based system.

• A textual dialog system i.e. you enter text on
the console and the system will provide a
response.

• In this version, the system responds with the
same String always:

– “That sounds interesting. Tell me more…”

Technical Support System V1

Class Diagram V1

Topic List

• Recap: Technical Support System V1

• Technical Support System V2

– Overview of the System

– Responder class

• Random

Technical Support System V2

• A console based, textual dialog system.

• In this version, the system provides a random response
from a list of pre-defined responses e.g.:

– "That sounds interesting. Tell me more..."
– "I need a bit more information on that."
– "Have you checked that you do not have a dll conflict?"
– "That is explained in the manual. Have you read the manual?“
– " That's not a bug, it's a feature!"
– "Could you elaborate on that?“
– etc.

Technical Support System V2

Class Diagram V2

No change
at class

level

import java.util.Scanner;

public class InputReader{

Scanner input;

public InputReader(){
input = new Scanner(System.in);

}

/**
* Read a line of text from standard input (the text terminal),
* and return it as a String.
*
* @return A String typed by the user.
*/

public String getInput() {
System.out.print("> "); // print prompt
String inputLine = input.nextLine().trim().toLowerCase();
return inputLine;

}
}

No change
in this class

public class SupportSystem
{

private InputReader reader;
private Responder responder;

public SupportSystem() {
reader = new InputReader();
responder = new Responder();

}
public static void main(String[] argvs){

SupportSystem app = new SupportSystem();
app.start();

}

public void start(){
printWelcome();
String input = reader.getInput();
while(! input.startsWith("bye")) {

String response = responder.generateResponse();
System.out.println(response);
input = reader.getInput();

}
printGoodbye();

}

No change
in this class

private void printWelcome(){
System.out.println("Welcome to the DodgySoft Technical Support System.");
System.out.println();
System.out.println("Please tell us about your problem. We will assist you");
System.out.println("with any problem you might have. Please type 'bye'");
System.out.println("to exit our system.");

}

private void printGoodbye(){
System.out.println("Nice talking to you. Bye...");

}

}

No change
in this class

Topic List

• Recap: Technical Support System V1

• Technical Support System V2

– Overview of the System

– Responder class

• Random

//V1 code
public class Responder{

/**
* Construct a Responder - nothing to do
*/
public Responder(){
}

/**
* Generate a response.
* @return A string that should be displayed as the response
*/
public String generateResponse(){

return "That sounds interesting. Tell me more...";
}

}

This class will change - to
generate a random response

Repository of Responses

• Instead of responding with:
"That sounds interesting. Tell me more...";

• We would like to respond with a random response from a
repository of responses e.g.
– "That sounds interesting. Tell me more..."
– "I need a bit more information on that."
– "Have you checked that you do not have a dll conflict?"
– "That is explained in the manual. Have you read the manual?“
– " That's not a bug, it's a feature!"
– "Could you elaborate on that?“
– etc.

• But how do we randomise the selection of a response?

Topic List

• Recap: Technical Support System V1

• Technical Support System V2

– Overview of the System

– Responder class

• Random

Using Random

• The library class Random can be used to
generate random numbers

import java.util.Random;
...
Random randomGenerator = new Random();
...
//random int number (no upper or lower bound)
int index1 = randomGenerator.nextInt();

//random number between 0 (inclusive) and 100 (exclusive)
int index2 = randomGenerator.nextInt(100);

import java.util.ArrayList;

public class Responder{
private ArrayList<String> responses;

public Responder() {
responses = new ArrayList<String>();
fillResponses();

}

private void fillResponses() {
responses.add("That sounds odd. Could you describe that problem in more detail?");
responses.add("No other customer has ever complained about this before. \n" +

"What is your system configuration?");
responses.add("That sounds interesting. Tell me more...");
responses.add("I need a bit more information on that.");
responses.add("Have you checked that you do not have a dll conflict?");
responses.add("That is explained in the manual. Have you read the manual?");
responses.add("Your description is a bit wishy-washy. Have you got an expert\n" +

"there with you who could describe this more precisely?");
responses.add("That's not a bug, it's a feature!");
responses.add("Could you elaborate on that?");

}
}

V2.0 Responder…changes
to create a repository of

responses.

import java.util.ArrayList;
import java.util.Random;

public class Responder{
private Random randomGenerator;
private ArrayList<String> responses;

public Responder() {
randomGenerator = new Random();
responses = new ArrayList<String>();
fillResponses();

}

public String generateResponse() {
// Pick a random number between 0 (inclusive) and the size
// of the ArrayList (exclusive).

int index = randomGenerator.nextInt(responses.size());
return responses.get(index);

}

V2.0 Responder
changes…to return a

random response from
a repository of

responses.

Department of Computing and Mathematics
http://www.wit.ie/

