
Grouping Objects

Produced by: Dr. Siobhán Drohan

Department of Computing and Mathematics
http://www.wit.ie/

Primitive Arrays and Iteration



Topic List

• Primitive arrays
– Why do we need them?

– What are they?

– Using a primitive array.

– Recap: for and while loops.

– Arrays and counter-controlled loops.

– Arrays and sentinel-based loop.

– Arrays and flag-based loops.

– Do you have to use all elements in the array?



Why arrays? 

• We look at different pieces of code to explain 
the concept.

• In each case:

– we read in 5 numbers from the keyboard

– add them

– print the result. 



Adding 5 numbers 

• Reads in 5 numbers from 
the keyboard

• Adds the numbers
• Prints out the result
• Does not remember the 

numbers



Rule – Never lose data 

• Should always try to store that data for later 
use (in a more real-life system you would 
almost always need to use the input data 
again). 

• The previous code has not done this.

• We could try another way ... 



Remembering the 5 numbers 



Remembering the 5 numbers 

• This works in the sense that 
we have retained the input 
data.

• But:
• We cannot use loops. 
• If we had to read in 1,000 

numbers, this would 
require extensive code.

• We need another, new data 
structure... 
• enter arrays...



Topic List

• Primitive arrays
– Why do we need them?

– What are they?

– Using a primitive array.

– Recap: for and while loops.

– Arrays and counter-controlled loops.

– Arrays and sentinel-based loop.

– Arrays and flag-based loops.

– Do you have to use all elements in the array?



Arrays (fixed-size collections)

• The collections framework (e.g. ArrayList) are 
flexible-sized collections. 

• Sometimes the maximum collection size can 
be pre-determined.

• Programming languages usually offer a special 
fixed-size collection type: an array.

• Java arrays can store objects or primitive-type 
values.

• Arrays use a special syntax.



Single box
If you think of a variable (field, local variable) as a box in memory:

A box called ‘x’ in which we can put one integer

int x;

• We can:
• change the value stored completely, 
• add one to it,
• subtract one from it etc. 

• However this box can hold only one value. Imagine a bigger 
box made up of sub-divisions or sections. Such a box is called 
an array and would look like:



Structure of a primitive array

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html



Declaring a primitive array

• This is a box made up of four sub-divisions 
called 0, 1, 2 and 3. 

• NOTE :THE FIRST POSITION IS 0.

0

1

2

3

int[]  a;
a = new int[4];

a[0]

a[1]

a[2]

a[3]



Accessing elements of an array

• You can access any element separately, e.g.

a[1] = 10;

0

1

2

3

a[0]

a[1]

a[2]

a[3]

10



Rules for primitive Arrays

1. When you declare an array of a specific type, 
each sub-section (element) of the array is of 
the same declared type.

2. The size of the array, i.e. how many sections 
(elements) in the array is denoted by the 
number in the square bracket in the 
following statement:

int[] a = new int[4];



int[]  a;
:
:
a = new int[4];

int[]  a =  new int[4];

Different 
ways to 
declare 
arrays

int[] numbers = { 4, 1, 22, 9};

Declaring primitive arrays



Declaring an Array using literals

private int[] numbers = { 3, 15, 4, 5 };

System.out.println(numbers[1]);

NOTE:  literals can only be used when declaring an array.

declaration and initialisation

at the same time



Standard array use

private int[] hourCounts;

private String[] names;

private Person[] crowd;

...

hourCounts = new int[24];

...

hourcounts[i] = 0;

hourcounts[i]++;

System.out.println(hourcounts[i]);

declaration

creation

use



Topic List

• Primitive arrays
– Why do we need them?

– What are they?

– Using a primitive array.

– Recap: for and while loops.

– Arrays and counter-controlled loops.

– Arrays and sentinel-based loop.

– Arrays and flag-based loops.

– Do you have to use all elements in the array?



Returning to our method that reads 
in and sums 5 numbers (typed in 

from the keyboard)…

and converting it to use primitive arrays…



Using arrays to remember numbers

• Using arrays
• Separate 

loop to add 
up the 
numbers



Using arrays to remember numbers

We could, of course 
sum the values 
immediately as they 
come in



Using arrays with any size

If we wanted to 
change how 
many numbers 
we want to 
add…



Using arrays with any size

Asking the user how 
many numbers they 
want to enter…



Array length

private int[] numbers = { 3, 15, 4, 5 };

int n = numbers.length;

No brackets!  

Length is NOT 

a method.

for(int i = 0; i < numbers.length; i++) 

{

System.out.println(i + ": " + numbers[i]);

}



What types can be stored in arrays?

• An array can store any type of data i.e.:
• Object Types or
• Primitive Types 

int a[] = new int[10];

String words = new String[30];

Circle circles[] = new Circle[20];



Topic List

• Primitive arrays
– Why do we need them?

– What are they?

– Using a primitive array.

– Recap: for and while loops.

– Arrays and counter-controlled loops.

– Arrays and sentinel-based loop.

– Arrays and flag-based loops.

– Do you have to use all elements in the array?



Recap: for loops

• There are two variations of the for loop:

– for
The for loop is often used to iterate a fixed 
number of times.
Often used with a variable that changes a fixed 
amount on each iteration.

– for-each
We used the for-each loop to iterate over a 
flexible-sized collection e.g. ArrayList.



Recap: for and while loop

for(initialization; condition; post-body action) {
statements to be repeated

}

General form of a for loop

Equivalent in while-loop form

initialization;
while(condition) {

statements to be repeated
post-body action

}



Topic List

• Primitive arrays
– Why do we need them?

– What are they?

– Using a primitive array.

– Recap: for and while loops.

– Arrays and counter-controlled loops.

– Arrays and sentinel-based loop.

– Arrays and flag-based loops.

– Do you have to use all elements in the array?



Counter-controlled loops (arrays)

int i = 0;
while(i < hoursArray.length) {

System.out.println(hour + ": " + hoursArray[i]);
i++;

}

while loop version

for(int i = 0; i < hoursArray.length; i++) {
System.out.println(hour + ": " + hoursArray[i]);

}

for loop version



Loop Control Variable (while)

int i = 0;
while(i < hoursArray.length) {

System.out.println(hour + ": " + hoursArray[i]);
i++;

}

Initialise

Condition

Update directly 
before end of loop



Loop Control Variable (for)

Initialise Condition Post-body update

for(int i = 0; i < hoursArray.length; i++) {
System.out.println(hour + ": " + hoursArray[i]);

}



Some for loop practice

Given an array of numbers, print out all the 
numbers in the array, using a for loop.

int[] numbers = { 4, 1, 22, 9, 14, 3, 9};

for ... Number 1: 4
Number 2: 1
Number 3: 22
Number 4: 9
Number 5: 14
Number 6: 3
Number 7: 9

Your output should 
look like this



Solution

Your output should 
look like this

Number 1: 4
Number 2: 1
Number 3: 22
Number 4: 9
Number 5: 14
Number 6: 3
Number 7: 9



More for loop practice

Fill an array with the Fibonacci sequence.

int[] fib = new int[40];

fib[0] = 0;

fib[1] = 1;

for ...

0  1  1  2  3  5  8  13  21  34 ...



Solution
Number 1: 0
Number 2: 1
Number 3: 1
Number 4: 2
Number 5: 3
Number 6: 5
Number 7: 8
Number 8: 13
Number 9: 21
Number 10: 34
Number 11: 55
Number 12: 89
Number 13: 144
Number 14: 233
Number 15: 377
….
Number 39: 39088169
Number 40: 63245986



Recap: for-each loop pseudo-code

for(ElementType element : collection) {
loop body

} 

For each element in collection, do the things in the loop body.

loop header
for keyword

Statement(s) to be repeated

Pseudo-code expression of the actions 

of a for-each loop

General form of the for-each loop



Some for each loop practice

• Given an array of numbers, print out all the 
numbers in the array, using a for each loop.

int[] numbers = { 4, 1, 22, 9, 14, 3, 9};

for ... Number: 4
Number: 1
Number: 22
Number: 9
Number: 14
Number: 3
Number: 9

Your output should 
look like this



Solution
Number: 4
Number: 1
Number: 22
Number: 9
Number: 14
Number: 3
Number: 9



Some for each loop practice

• Continuing to use a for each loop, refactor the 
code on the previous slide to include a count 
for each number printed.

int[] numbers = { 4, 1, 22, 9, 14, 3, 9};

for ...
Number 1: 4
Number 2: 1
Number 3: 22
Number 4: 9
Number 5: 14
Number 6: 3
Number 7: 9

Your output should 
now look like this



Solution
Number 1: 4
Number 2: 1
Number 3: 22
Number 4: 9
Number 5: 14
Number 6: 3
Number 7: 9



Topic List

• Primitive arrays
– Why do we need them?

– What are they?

– Using a primitive array.

– Recap: for and while loops.

– Arrays and counter-controlled loops.

– Arrays and sentinel-based loop.

– Arrays and flag-based loops.

– Do you have to use all elements in the array?



while Loops

• How do we control a while loop when we 
don’t know how many inputs we will have?

e.g. ‘average of ages of people in the room’, if 
you don’t know how many are in the room.

while-loop

initialization;
while(boolean condition) {

statements to be repeated
post-body action

}



Sentinel-based loops

• We will signal the end of input with a special 
value i.e. a sentinel value.

e.g. the code on the next slide continually 
asks the user to enter a person’s age.  
When the user enters a value of -1, the 
loops ends and the total of all the ages is 
printed to the console.



Solution
Initialise

LCV Condition

Update LCV directly 
before end of loop



Sentinel-based loops - structure

• Concept of Loop Control Variable is vital here.

• The loop continuation is solely based on the input, so 
the variable containing the information is the Loop 
Control Variable.

• Initialise the Loop Control Variable before entry into 
the loop.

• Remember to ‘update the Loop Control Variable’ just 
before the end of the loop. 



Topic List

• Primitive arrays
– Why do we need them?

– What are they?

– Using a primitive array.

– Recap: for and while loops.

– Arrays and counter-controlled loops.

– Arrays and sentinel-based loop.

– Arrays and flag-based loops.

– Do you have to use all elements in the array?



while Loops

• How do we control a while loop when we are 
looking for a specific property in a collection?

e.g. test an array of numbers to see if any 
numbers are odd.

while-loop

initialization;
while(boolean condition) {

statements to be repeated
post-body action

}



Flag-Based Loops

• These are used when you want to examine a 
collection of data to check for a property. 

• Once this property has been established, it 
cannot be ‘unestablished’:

– ‘Once the flag is raised, it cannot by taken down’



Code to check ‘any numbers odd’



Slightly better code..

Use of 
boolean

variable in 
condition



What about having a

flag-based loop with a 

boolean return type?



Calling the 
method and 
handling the 

returned 
boolean

Code with 
boolean

return type



Topic List

• Primitive arrays
– Why do we need them?

– What are they?

– Using a primitive array.

– Recap: for and while loops.

– Arrays and counter-controlled loops.

– Arrays and sentinel-based loop.

– Arrays and flag-based loops.

– Do you have to use all elements in the array?



Do we have to use all elements in the array?

• No.  We may not know how many elements of 
the array will actually be used e.g.

– We wish to store an average mark for each of the 
50 students in a particular class  create an array 
of 50 elements.

– However, not all students might have sat their 
assessments; perhaps only 45 did  only 45 of 
the elements will be populated with an average 
mark.



Do we have to use all elements in the array?

• When not all elements in an array are populated, 
we need to:
– have another variable (e.g. int size) which contains the 

number of elements of the array is actually used. 

– ensure size is used when processing the array e.g.

for (int i= 0; i < size; i++)

• For now, though, we assume that all elements of 
the array are populated and therefore ready to 
be processed.



Questions?



Department of Computing and Mathematics
http://www.wit.ie/


