
Exception Handling

Produced 

by:

Dr. Siobhán Drohan
Maireád Meagher

Department of Computing and Mathematics
http://www.wit.ie/

Handling bad user input…



ShopV4.0 (or any version)

• When testing it, did you try to enter a String
instead of an int? e.g. for the Product code?

• What happened?



ShopV4.0 is NOT robust



ShopV4.0 (or any version)

• The following code caused a runtime error...

double unitCost = input.nextDouble();

• This is called a runtime exception.

• How do we fix this?  How do we stop the 
program from crashing?



What are Exceptions?

•An Exception is an object that signals that some unusual 
condition has occurred while the program is executing.  

•Exceptions are intended to be detected and handled, so that the 
program can continue in a sensible way if at all possible.

•Java has many predefined Exception objects, and we can also 
create our own.  



When an exception occurs…

...the normal flow of execution is disrupted and 
transferred to code, which can handle the 

exception condition.  

The exception mechanism is a lot cleaner than 
having to check an error value after every 

method call that could potentially fail. 



RuntimeException

• is a subclass of the Exception class 

• encompasses all exceptions which can ordinarily happen at 
run-time.

• these exceptions can be thrown by any java statement or a 
method call. 

• can be avoided through good programming practices!

RuntimeException Example Causes

ArithmeticException Can be caused by dividing by zero.

ArrayIndexOutOfBoundsException Referencing an array index number of 7 when 
only 5 exist in the array.

NullPointerException trying to access an object that has no memory 
allocated yet.



Catching Exceptions

Catching an exception means declaring that you can 
handle exceptions of a particular class from a particular 
block of code.  

– You specify the block of code and then provide handlers for 
various classes of exception. 

– If an exception occurs then execution transfers to the 
corresponding piece of handler code. 



try and catch

To catch exceptions, you surround a block of code with a "try, catch" 
statement. 

try{
// The try clause is the piece of code which you want to try to execute.
// it contains statements in which an exception could be raised

}
catch (Exception e){

// The catch clauses are the handlers for the various exceptions.
//it contains code to handle Exception and recover

}



Example of try and catch

The parameter e is of type Exception and we 
can use it to print out what exception occurred.

try{
myMethod();

}
catch (Exception e){

System.err.println(“Caught Exception:  “ + e)
}



Flow of control in Exception Handing



ShopV5.0 – making our app robust

try {
System.out.print("Please enter the product code: "); 
code = input.nextInt();

}
catch (Exception e) {

input.nextLine(); //swallows the buffer contents
System.out.println("Number expected - you entered text");

}



Improve – loop until input valid

boolean goodInput = false; //Loop  Control Variable

while (! goodInput ) {
try {

System.out.print("Please enter the product code: "); 
code = input.nextInt();
goodInput = true;

}
catch (Exception e) {

input.nextLine(); //swallows the buffer contents
System.out.println("Num expected - you entered text");

}
}



Using do..while

boolean goodInput = false; 
do {

try {
System.out.print("Please enter the product code: "); 
code = input.nextInt();
goodInput = true;

}
catch (Exception e) {

input.nextLine(); //swallows the buffer contents
System.out.println("Num expected - you entered text");

}
}  while (!goodInput);



ShopV5.0 – making our app robust

What could cause a runtime exception here?



ShopV5.0 – making our app robust



ShopV5.0 – making our app robust

nextInt() and 
nextDouble() are  

now exception 
handled!



nextInt() and 
nextDouble() are  

now exception 
handled!



ShopV5.0 – making our app robust

• But what about these int reads?  

• Do I have to repeat the same code here?

• What happens if I add more int reads?



ShopV5.0 – making our app robust

• In order to have 
DRY code, we 
should really 
write a private 
helper/utility 
method that can 
validate our int
input.

• How would we 
write it?



ShopV5.0 – making our app robust

For this new 
method:

• We need to pass 
in a “prompt” 
string to be 
printed to the 
console.

• And return a valid 
int.



ShopV5.0 – making our app robust

Here we are 
calling the new 
helper method 
to read a valid 

int.



And again, we 
are calling the 

new helper 
method to 
read a valid 

int.



ShopV5.0 – making our app robust

Lets write a 
helper method 
now to read a 
valid double…





Department of Computing and Mathematics
http://www.wit.ie/


