
Grouping Objects

Produced by: Dr. Siobhán Drohan
(based on Chapter 4, Objects First with Java - A Practical
Introduction using BlueJ, © David J. Barnes, Michael Kölling)

Department of Computing and Mathematics
http://www.wit.ie/

ArrayList (generic classes) and Iteration

Topic list

• Grouping Objects
– Developing a basic personal notebook project using Collections

e.g. ArrayList

• Indexing within Collections
– Retrieval and removal of objects

• Generic classes e.g. ArrayList
• Iteration

– Using the for loop
– Using the while loop
– Using the for each loop
– Using the Iterator

• Coding a Shop Project that stores an ArrayList of Products.

The requirement to group objects

• Many applications involve collections of objects:

– Personal organizers.

– Library catalogs.

– Student-record system.

• The number of items to be stored varies:

– Items added.

– Items deleted.

Example: A personal notebook

• Notes may be
stored.

• Individual notes
can be viewed.

• There is no limit
to the number of
notes.

• It will tell how
many notes are
stored.

Java API: the class library

• Many useful classes.

• We don’t have to write everything from
scratch.

• Java calls its libraries, packages.

Back to the notebook:

• Grouping objects is a recurring requirement.

– The java.util package contains classes for
doing this…the Collections Framework.

https://docs.oracle.com/javase/8/docs/api/

Java’s Collections Framework

import java.util.ArrayList;

public class Notebook
{

// Storage for an arbitrary number of notes.
private ArrayList<String> notes;

// Perform any initialization required for the notebook.
public Notebook()
{

notes = new ArrayList<String>();
}

}

ArrayList Collection

• We specify:

– the type of collection: ArrayList

– the type of objects it will contain: <String>

• We say, “ArrayList of String”.

Object structures with ArrayList

Adding a third note

Features of the ArrayList Collection

• It increases its capacity as necessary.

• It keeps a private count (size() accessor).

• It keeps the objects in order.

• Details of how all this is done are hidden.

– Does that matter? Does not knowing how prevent
us from using it?

import java.util.ArrayList;

public class Notebook
{

private ArrayList<String> notes;

public Notebook(){
notes = new ArrayList<String>();

}

public void storeNote(String note){
notes.add(note);

}

public int numberOfNotes(){
return notes.size();

}
}

Adding a new note

Returning the

number of notes

Topic list

• Grouping Objects
– Developing a basic personal notebook project using Collections

e.g. ArrayList

• Indexing within Collections
– Retrieval and removal of objects

• Generic classes e.g. ArrayList
• Iteration

– Using the for loop
– Using the while loop
– Using the for each loop
– Using the Iterator

• Coding a Shop Project that stores an ArrayList of Products.

ArrayList: Index numbering

Retrieving an object

Index

validity

checks

public void showNote(int noteNumber)
{

if(noteNumber < 0) {
// This is not a valid note number.

}
else if(noteNumber < numberOfNotes()) {

System.out.println(notes.get(noteNumber));
}
else {

// This is not a valid note number.
}

}
Retrieve and

print the note

Removing an object

public void removeNote(int noteNumber)
{

if(noteNumber < 0) {
// This is not a valid note number, so do nothing.

}
else if(noteNumber < numberOfNotes()) {

// This is a valid note number.
notes.remove(noteNumber);

}
else {

// This is not a valid note number, so do nothing.
}

}

Index

validity

checks

Delete the note at

the specific index

Removal may affect numbering

Topic list

• Grouping Objects
– Developing a basic personal notebook project using Collections

e.g. ArrayList

• Indexing within Collections
– Retrieval and removal of objects

• Generic classes e.g. ArrayList
• Iteration

– Using the for loop
– Using the while loop
– Using the for each loop
– Using the Iterator

• Coding a Shop Project that stores an ArrayList of Products.

Generic Classes

Collections are known
as parameterized or

generic types.

Generic Classes

String is not
parameterized.

Generic Classes

The type parameter says what we
want a list of:

ArrayList<Person>

ArrayList<TicketMachine>

etc.

Generic classes

• ArrayList implements list functionality:

Topic list

• Grouping Objects
– Developing a basic personal notebook project using Collections

e.g. ArrayList

• Indexing within Collections
– Retrieval and removal of objects

• Generic classes e.g. ArrayList
• Iteration

– Using the for loop
– Using the while loop
– Using the for each loop
– Using the Iterator

• Coding a Shop Project that stores an ArrayList of Products.

Processing a whole collection (iteration)

• We often want to perform some actions an arbitrary
number of times.
– E.g., print all the notes in the notebook. How many are

there? Does the amount of notes in our notebook vary?

• Most programming languages include loop
statements to make this possible.

• Loops provide us with a way to control how many
times we repeat certain actions.

Loops in Programming

• There are three types of standard loops in (Java)
programming:
– while

– for

– do while (more on this in later lectures)

• You can use for and while loops to iterate over your
ArrayList collection, or you can use two other special
constructs associated with Collections:
– for each

– Iterator

Topic list

• Grouping Objects
– Developing a basic personal notebook project using Collections

e.g. ArrayList

• Indexing within Collections
– Retrieval and removal of objects

• Generic classes e.g. ArrayList
• Iteration

– Using the for loop
– Using the while loop
– Using the for each loop
– Using the Iterator

• Coding a Shop Project that stores an ArrayList of Products.

for loop: pseudo-code

for(initialization; boolean condition; post-body action)
{

statements to be repeated
}

General form of a for loop

for loop: syntax

for(int i = 0; i < 4; i++)

for(initialization; boolean condition; post-body action)
{

statements to be repeated
}

for loop: syntax

for(int i = 0; i < 4; i++)

Initialization int i = 0 Initialise a loop control variable (LCV) e.g. i.
It can include a variable declaration.

Tested
(Boolean condition)

i < 4 Is a valid boolean condition that typically tests
the loop control variable (LCV).

Updated
(Post-body action)

i++ A change to the loop control variable (LCV).
Contains an assignment statement.

i is the Loop Control Variable (LCV); three things must happen to it. It must be:
• Initialised
• Tested
• Updated

for loop: flowchart

statement(s)
trueboolean

condition?

false

update

for loop: flowchart

statement(s)
trueboolean

condition?

false

update

for(int i = 0; i < 4; i++)
{

System.out.println(i);
}

for loop: all parts are optional

for (; ;)

{

// statements here

}

This is an infinite loop…

For loops can
be nested

for (int i=0; i < 4; i++)
for (int j=0; j < 4; j++)

println("The value of i is: " + i + " and j is: " + j);

The value of i is: 0 and j is: 0

The value of i is: 0 and j is: 1

The value of i is: 0 and j is: 2

The value of i is: 0 and j is: 3

The value of i is: 1 and j is: 0

The value of i is: 1 and j is: 1

The value of i is: 1 and j is: 2

The value of i is: 1 and j is: 3

The value of i is: 2 and j is: 0

The value of i is: 2 and j is: 1

The value of i is: 2 and j is: 2

The value of i is: 2 and j is: 3

The value of i is: 3 and j is: 0

The value of i is: 3 and j is: 1

The value of i is: 3 and j is: 2

The value of i is: 3 and j is: 3

for loop: for iterating over a collection

Increment

index by 1

for each value of i less than the size of the collection, print the

next note, and then increment i

Topic list

• Grouping Objects
– Developing a basic personal notebook project using Collections

e.g. ArrayList

• Indexing within Collections
– Retrieval and removal of objects

• Generic classes e.g. ArrayList
• Iteration

– Using the for loop
– Using the while loop
– Using the for each loop
– Using the Iterator

• Coding a Shop Project that stores an ArrayList of Products.

while loop: pseudo code

while(loop condition) {
loop body

}

while we wish to continue, do the things in the loop body

boolean test

while keyword

Statements to be repeated

Pseudo-code expression of the actions of

a while loop

General form of a while loop

while loop: construction

Declare and initialise loop control variable (LCV)

while(condition based on LCV)

{

“do the job to be repeated”

“update the LCV”

}

This structure should always be used

while loop: flowchart

statement(s)

true
boolean

expression?

false

int i = 1;
while (i <= 10)
{

System.out.println(i);
i++;

}

while loop: iterating over a collection

Increment i

by 1

while the value of i is less than the size of the collection, print

the next note, and then increment i

for versus while

Variable i is the Loop
Control Variable (LCV).
It must be initialised,
tested and changed.

int i = 0 is the
initialisation.

i < notes.size() is the
test.

i++ is the post-body
action i.e. the change.

Topic list

• Grouping Objects
– Developing a basic personal notebook project using Collections

e.g. ArrayList

• Indexing within Collections
– Retrieval and removal of objects

• Generic classes e.g. ArrayList
• Iteration

– Using the for loop
– Using the while loop
– Using the for each loop
– Using the Iterator

• Coding a Shop Project that stores an ArrayList of Products.

for each loop: pseudo code

for(ElementType element : collection) {
loop body

}

For each element in collection, do the things in the loop body.

loop header
for keyword

Statement(s) to be repeated

Pseudo-code expression of the actions

of a for-each loop

General form of the for-each loop

for each loop: iterating over a collection

for each note in notes, print out note

for each loop

• Can only be used for access; you can’t remove
the retrieved elements.

• Can only loop forward in single steps.

• Cannot use to compare two collections.

for each versus while

• for-each:
– easier to write.

– safer: it is guaranteed to stop.

• while:
– we don’t have to process the whole collection.

– doesn’t even have to be used with a collection.

– take care: could be an infinite loop.

Topic list

• Grouping Objects
– Developing a basic personal notebook project using Collections

e.g. ArrayList

• Indexing within Collections
– Retrieval and removal of objects

• Generic classes e.g. ArrayList
• Iteration

– Using the for loop
– Using the while loop
– Using the for each loop
– Using the Iterator

• Coding a Shop Project that stores an ArrayList of Products.

public interface Iterator

{

/**

* Returns whether or not the underlying collection has next

* element for iterating.

*/

boolean hasNext();

/**

* Returns next element from the underlying collection.

*/

Object next();

/**

* Removes from the underlying collection the last element returned

by next.

*/

void remove();

}

Defines a protocol
for iterating
through a
collection.

Iterator

iterator Attach an iterator
object to our notes

ArrayList.

We will use this iterator object
to traverse our ArrayList and
retrieve each note in turn.

iterator

hasNext() returns true if the iterator for notes has more
elements to view. This method only checks that there are

more items; it doesn’t retrieve any items.

iterator

next() returns the next element from the notes iterator.
However, we need to cast the returned element as String

because we didn’t type our Iterator.

iterator

Let’s type our Iterator so that we don’t have to cast the
retrieved elements…they will now be Strings.

Topic list

• Grouping Objects
– Developing a basic personal notebook project using Collections

e.g. ArrayList

• Indexing within Collections
– Retrieval and removal of objects

• Generic classes e.g. ArrayList
• Iteration

– Using the for loop
– Using the while loop
– Using the for each loop
– Using the Iterator

• Coding a Shop Project that stores an ArrayList of Products.

A basic example of a Shop

A Store has an
ArrayList of Product.

Product class
Our Product class contains

four instance variables

Product class
The constructor uses the data passed
in the four parameters to update the

instance fields.

Product class
The class has getters for

each instance field.

Product class
The class has setters for

each instance field.

Product class: toString()

• Let’s now add a toString() method.

• Java has a special method with the signature:

public String toString()

• You use this method to return a String that
represents an object’s state, in a user-friendly
manner.

Product class: toString()

We will call this method from the Store class
that we will construct over the next few slides.

Product class: toString()

• When you print an object using code similar to
System.out.println(someObject), java will
check the class for a toString method.

• If the toString() method:
– exists, java will automatically call it and the user

friendly object state will be printed.

– doesn’t exist, java will print the class name
followed by the memory location of the object.

A basic example of a Shop

A Store has an
ArrayList of Product.

Store class

• The Store class will contain:

1. an ArrayList of Product.

2. a method to add Products to the ArrayList.

3. a method to print out the contents of the
ArrayList.

4. a method that will print out the cheapest
product in the ArrayList.

Store class

• The Store class will contain:

1. an ArrayList of Product.

2. a method to add Products to the ArrayList.

3. a method to print out the contents of the
ArrayList.

4. a method that will print out the cheapest
product in the ArrayList.

1. Declaring an ArrayList of Product

import java.util.ArrayList;

public class Store
{

private ArrayList<Product> products;

// constructor
public Store()
{

products = new ArrayList<Product> ();
}

}

1. Declaring an ArrayList of Product

import java.util.ArrayList;

public class Store
{

private ArrayList<Product> products;

// constructor
public Store()
{

products = new ArrayList<Product> ();
}

}

importing the
ArrayList class so
we can use it.

declaring an
ArrayList of
Product as a
private instance
variable.

calling the
constructor of the
ArrayList class to
build the ArrayList
object.

Store class

• The Store class will contain:

1. an ArrayList of Product.

2. a method to add Products to the ArrayList.

3. a method to print out the contents of the
ArrayList.

4. a method that will print out the cheapest
product in the ArrayList.

2. Add a Product object to an ArrayList of
Product

public void add (Product product)
{

products.add (product);
}

Product: The ArrayList
holds objects of this
type, Product.

product: This is object
of type Product that
we want to add to the
ArrayList.

products: This is the
ArrayList of Product.

add: This is add
method from the
ArrayList class that we
just imported.

2. Add a Product object to an ArrayList of
Product

import java.util.ArrayList;

public class Store{

private ArrayList<Product> products;

public Store(){
products = new ArrayList<Product> ();

}

public void add (Product product){
products.add (product);

}
}

Store class

• The Store class will contain:

1. an ArrayList of Product.

2. a method to add Products to the ArrayList.

3. a method to print out the contents of the
ArrayList.

4. a method that will print out the cheapest
product in the ArrayList.

3. Printing all Products in an ArrayList of Product

public void listProducts(){
for (Product product: products){

System.out.println(product.toString());
}

}

Product: This is
the type of
object that is
stored in the
ArrayList.

product: This is object
reference pointing to the
current object we are looking
at in the ArrayList. As we
iterate over each object in the
ArrayList, this reference will
change to point to the next
object, and so on.

products: This is
the ArrayList of
Product.

Store class

• The Store class will contain:

1. an ArrayList of Product.

2. a method to add Products to the ArrayList.

3. a method to print out the contents of the
ArrayList.

4. a method that will print out the cheapest
product in the ArrayList.

Finding the Cheapest Product

1. If products have been added to the ArrayList
1.1 Assume that the first Product in the ArrayList is the cheapest

(set a local variable to store this object).
1.2 For all product objects in the ArrayList

1.2.1 if the current product cost is lower than the cost of
the product object stored in the local variable,

1.2.1.1 update the local variable to hold the
current product object.

end if
end for

1.3 Return the name of the cheapest product.
else
1.4 Return a message indicating that no products exist.
end if

Finding the Cheapest Product

Finding the Cheapest Product

if products have been added to the ArrayList
// return the cheapest product

else
return a message indicating that no products exist.

end if

How do we write the
code for this algorithm?

Working on the outer if statement

Finding the Cheapest Product

if products have been added to the ArrayList
//return the cheapest product

else
return a message indicating that no products exist.

end if

if (products.size() > 0){
//return the cheapest product

}
else{

return “No products added to the ArrayList”;
}

Working on the outer if statement

Working on step 1.1

if products have been added to the ArrayList
// 1.1 Assume that the first Product in the ArrayList is the
// cheapest (set a local variable to store this object).

else
return a message indicating that no products exist.

end if

How do we write the
code for this step?

Working on step 1.1

if products have been added to the ArrayList
// 1.1 Assume that the first Product in the ArrayList is the
// cheapest (set a local variable to store this object).

else
return a message indicating that no products exist.

end if

if (products.size() > 0){
Product cheapestProduct = products.get(0);

}
else{

return “No products added to the ArrayList”;
}

Working on the for loop

if products have been added to the ArrayList
// 1.1 Assume that the first Product in the ArrayList is the
// cheapest (set a local variable to store this object).
// 1.2 For all product objects in the ArrayList
// determine the cheapest product
// end for

else
return a message indicating that no products exist.

end if

How do we write the
code for this step?

Working on the for loop

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products)
{
}

}
else{

return “No products added to the ArrayList”;
}

Working on the code inside the for loop

1. If products have been added to the ArrayList
1.1 Assume that the first Product in the ArrayList is the cheapest

(set a local variable to store this object).
1.2 For all product objects in the ArrayList

1.2.1 if the current product cost is lower than the cost of
the product object stored in the local variable,

1.2.1.1 update the local variable to hold the
current product object.

end if
end for

1.3 Return the name of the cheapest product.
else
1.4 Return a message indicating that no products exist.
end if

How do we write the
code for this?

Working on the code inside the for loop

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products){

if (product.getUnitCost() < cheapestProduct.getUnitCost())
{
}

}
}
else{

return “No products added to the ArrayList”;
}

Working on the code inside the for loop

1. If products have been added to the ArrayList
1.1 Assume that the first Product in the ArrayList is the cheapest

(set a local variable to store this object).
1.2 For all product objects in the ArrayList

1.2.1 if the current product cost is lower than the cost of
the product object stored in the local variable,

1.2.1.1 update the local variable to hold the
current product object.

end if
end for

1.3 Return the name of the cheapest product.
else
1.4 Return a message indicating that no products exist.
end if

How do we write the
code for this step?

Working on the code inside the for loop

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products){

if (product.getUnitCost() < cheapestProduct.getUnitCost()){
cheapestProduct = product;

}
}

}
else{

return “No products added to the ArrayList”;
}

Working on the last step, 1.3

1. If products have been added to the ArrayList
1.1 Assume that the first Product in the ArrayList is the cheapest

(set a local variable to store this object).
1.2 For all product objects in the ArrayList

1.2.1 if the current product cost is lower than the cost of
the product object stored in the local variable,

1.2.1.1 update the local variable to hold the
current product object.

end if
end for

1.3 Return the name of the cheapest product.
else
1.4 Return a message indicating that no products exist.
end if

How do we write the
code for this step?

Working on the last step, 1.3

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products){

if (product.getUnitCost() < cheapestProduct.getUnitCost()){
cheapestProduct = product;

}
}
return cheapestProduct.getProductName();

}
else{

return “No products added to the ArrayList”;
}

Questions?

Review

• Collections allow an arbitrary number of
objects to be stored.

• Class libraries usually contain tried-and-tested
collection classes.

• Java’s class libraries are called packages.

• We have used the ArrayList class from the
java.util package.

Review

• Items may be added and removed.

• Each item has an index.

• Index values may change if items are removed
(or further items added).

• The main ArrayList methods are add,
get, remove and size.

• ArrayList is a parameterized or generic
type.

Review

• Loop statements allow a block of statements
to be repeated.

• The for-each loop allows iteration over a
whole collection.

• The while loop allows the repetition to be
controlled by a boolean expression.

Department of Computing and Mathematics
http://www.wit.ie/

