Grouping Objects

ArrayList (generic classes) and Iteration

Produced by: Dr. Siobhdn Drohan

(based on Chapter 4, Objects First with Java - A Practical
Introduction using BlueJ, © David J. Barnes, Michael Kolling)

@ Waterford Institute of Technology Department of Computing and Mathematics

S INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/
L

Topic list

Grouping Objects

— Developing a basic personal notebook project using Collections
e.g. ArraylList

Indexing within Collections

— Retrieval and removal of objects
Generic classes e.g. ArrayList
lteration

— Using the for loop

— Using the while loop

— Using the for each loop
— Using the Iterator

Coding a Shop Project that stores an ArrayList of Products.

The requirement to group objects

 Many applications involve collections of objects:
— Personal organizers.
— Library catalogs.
— Student-record system.

e The number of items to be stored varies:
— Items added.
— ltems deleted.

Example: A personal notebook

Notes may be
stored.

11 Notes i
Q Yod i i
[] e SO i .
Individual notes o
Fevwrite Rastmavatac. v
||
Departing
° AR el watoh AA flight 1910 SFO to LAX - Feb 19, 9:30 am
C a n e V I e W e Movies to rent on iTunes: | AA flight 267, LAX to HNL - Feb 19, 10:40 am
* BBQ Shopping List
To Po List eturn
T h r i S n I i i t AA flight 28 HNL to SFO - Feb 28, 1:45 pm

notes.

It will tell how
many notes are
stored.

Java API: the class library

* Many useful classes.

 We don’t have to write everything from
scratch.

* Java calls its libraries, packages.
Back to the notebook:

* Grouping objects is a recurring requirement.

— The java.util package contains classes for
doing this...the Collections Framework.

https://docs.oracle.com/javase/8/docs/api/

Java’s Collections Framework

iterator()

Iterable<E> > Tterator<E>
Collection<E>
Programming at L —— e !
& & List<E> Set<E> Queue<E> Map<K, V>
these Interfaces &
T . T
SortedSet<E> Deque<E> SortedMap<K, V>
NavigableSet<E> NavigableMap<K, V>
) ArraylList HashSet PriorityQueue HashMap
Implementation LinkedList LinkedHashSet ArrayDeque(Degue) HashlLinkedMap
Classes Stack TreeSet(SortedSet) LinkedList(Deque) HashTable(sync)

Vector(sync) TreeMap(SortedMap)

import java.util.ArrayList;

public class Notebook

{

// Storage for an arbitrary number of notes.
private ArrayList<String> notes;

// Perform any initialization required for the notebook.
public Notebook()

{

notes = new ArrayList<String>();

)

ArrayList Collection

* We specify:
— the type of collection: ArrayList
— the type of objects it will contain: <String>

* We say, “ArrayList of String”.

Object structures with ArrayList

"Recharge phone"

Adding a third note

"Buy bread" "Recharge phone" "11:30 meet John"

Features of the ArrayList Collection

* |t increases its capacity as necessary.
* |t keeps a private count (size () accessor).

* |t keeps the objects in order.

 Details of how all this is done are hidden.

— Does that matter? Does not knowing how prevent
us from using it?

import java.util.ArrayList;

public class Notebook

{

private ArrayList<String> notes;

public Notebook(){
notes = new ArrayList<String>();

}
public void storeNote(String note){
notes.add(note); « {Adding a hew note}
}
public int numberOfNotes(){ - :
return notes.size(); < Returning the
} | number of notes

)

Topic list

Grouping Objects

— Developing a basic personal notebook project using Collections
e.g. ArraylList

Indexing within Collections
— Retrieval and removal of objects

Generic classes e.g. ArrayList

lteration

— Using the for loop

— Using the while loop

— Using the for each loop
— Using the Iterator

Coding a Shop Project that stores an ArrayList of Products.

ArrayList: Index numbering

"Buy bread" "Recharge phone" "11:30 meet John"

Retrieving an object

r

.

Index
validity
checks

DY

public void showNote(int noteNumber)

{
if(noteNumber < 0) {

// This is not a valid note number.

}

w,

N\

> else if(noteNumber < numberOfNotes()) {
System.out.printin(notes.get(noteNumber));

N\

else {
// This is not a valid note number.

A

print the not

} Retrieve and
e

}

Removing an object

r

Index

validity

.

checks

~(

public void removeNote(int noteNumber)

/ if(noteNumber < 0) {

// This is not a valid note number, so do nothing.

A

else if(noteNumber < numberOfNotes()) {
// This is a valid note number.

\ notes.remove(noteNumber); «—
}

Delete the note at
the specific index

else {
// This is not a valid note number, so do nothing.

}

}

Removal may affect numbering

"11:30 meet John"

Topic list

Grouping Objects

— Developing a basic personal notebook project using Collections
e.g. ArraylList

Indexing within Collections
— Retrieval and removal of objects

Generic classes e.g. ArrayList

lteration

— Using the for loop

— Using the while loop

— Using the for each loop
— Using the Iterator

Coding a Shop Project that stores an ArrayList of Products.

Generic Classes

OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

compactl, compact2, compact3

java.lang OVERVIEW PACKAGE USE TREE DEPRECAT
Class String

PREV CLASS NEXT CLASS FRAMES NO FRAMES

java.lang.Object SUMMARY: NESTED | FIELD | CONSTR | METHOD ~ DETAI

Java.lang.String compactl, compact2, compact3

java.util

Class ArrayList<E>

Collections are known /’
L va.lang.Object

as parameterlzed or java.util.AbstractCollection<E>

generic types. java.util. AbstractList<E>
java.util.ArrayList<E>

Generic Classes

OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

compactl, compact2, compact3

java.lang OVERVIEW PACKAGE USE TREE DEPRECAT
Class String

PREV CLASS NEXT CLASS FRAMES NO FRAMES

java.lang.Obje SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAI

Java.lang.ptring compactl, compact2, compact3

/ java.util

— Class ArrayList<E>
String is not

parameterized.

java.lang.Object
java.util.AbstractCollection<E>
java.util.AbstractList<E>
java.util.ArrayList<E>

Generic Classes

OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

compactl, compact2, compact3

java.lang OVERVIEW PACKAGE USE TREE DEPRECAT
Class String

PREV CLASS NEXT CLASS FRAMES NO FRAMES

java.lang.Object SUMMARY: NESTED | FIELD | CONSTR | METHOD ~ DETAI

Java.lang.String compactl, compact2, compact3

java.util

The type parameter says what we Class ArraylList<E>
want a list of:

; java, “Object
ArrayList<Person>] java.util.AbstractCollection<E>
ArraylList<TicketMachine> java.util.AbstractList<E>

etc. java.util.ArrayList<E>

Generic classes

e ArrayList implements list functionality:

boolean add (E e)
Appends the specified element to the end of this list.

void clear()
Removes all of the elements from this list.

E get(int index)
Returns the element at the specified position in this list.

E remove(int index)
Removes the element at the specified position in this list.

int size()
Returns the number of elements in this list.

Topic list

Grouping Objects

— Developing a basic personal notebook project using Collections
e.g. ArraylList

Indexing within Collections
— Retrieval and removal of objects

Generic classes e.g. ArrayList

lteration

— Using the for loop

— Using the while loop

— Using the for each loop
— Using the Iterator

Coding a Shop Project that stores an ArrayList of Products.

Processing a whole collection (iteration)

* We often want to perform some actions an arbitrary
number of times.

— E.g., print all the notes in the notebook. How many are
there? Does the amount of notes in our notebook vary?

* Most programming languages include loop
statements to make this possible.

* Loops provide us with a way to control how many
times we repeat certain actions.

Loops in Programming

* There are three types of standard loops in (Java)
programming:
— while
— for
— do while (more on this in later lectures)

* You can use for and while loops to iterate over your
ArrayList collection, or you can use two other special
constructs associated with Collections:

— for each
— |terator

Topic list

Grouping Objects

— Developing a basic personal notebook project using Collections
e.g. ArraylList

Indexing within Collections
— Retrieval and removal of objects

Generic classes e.g. ArrayList
lteration

— Using the for loop

— Using the while loop
— Using the for each loop
— Using the Iterator

Coding a Shop Project that stores an ArrayList of Products.

for loop: pseudo-code

[General form of a for loop }

for(initialization; boolean condition; post-body action)

{

statements to be repeated

}

for loop: syntax

for(inti=0; i<4; i++)

N\

7 7 A .
for(initialization; boolean condition; post-body action)

{

statements to be repeated

)

for loop: syntax

for(inti=0; i<4; i++)

i is the Loop Control Variable (LCV); three things must happen to it. It must be:

* |Initialised
e Tested
* Updated
Initialization inti=0 | Initialise a loop control variable (LCV) e.g. i.
It can include a variable declaration.
Tested i<4 Is a valid boolean condition that typically tests
(Boolean condition) the loop control variable (LCV).
Updated i++ A change to the loop control variable (LCV).

(Post-body action)

Contains an assignment statement.

for loop: flowchart

true

boolean
—» | statement(s) —» | update

condition?

false

for loop: flowchart

boolean
condition?

false

true

statement(s)

update

for(inti=0;i<4;i++)

{
J

System.out.printIn(i);

<A BlueJ: Terminal Window ... —

Options

O

X

w N BB O

for loop: all parts are optional

for(; ;)
{

// statements here

This is an infinite loop...

The value of iis: 0 and j is:
The value ofiis: 0 and j is:

FOr |OO pS Can The value of i is: 0 and j is:

The value of iis: 0 and j is:
be neSted The value ofiis: 1 andjis:

The value ofiis: 1 andjis:

The value ofiis: 1 andjis:

The value ofiis: 1 andjis:

The value ofiis: 2andj is:

The value ofiis: 2andj is:

The value ofiis: 2andj is:

The value ofiis: 2andj is:

The value ofiis: 3andj is:

The value ofiis: 3andj is:

for (inti=0; i < 4; i++) The value of i is: 3 and j is:

for (int j=0' J <4 j++) The value of iis: 3 and j is:
printIn("The value of iis: " +i+"andjis: " +j);

WIN—_LOWUMN-—-0WLBUDN—-20WLBN-—-O0

for loop: for iterating over a collection

/‘:'r*
* List all notes 1n the notebook. !nuewmnt
* / index by 1

public void listNotes ()
{

for(int i= 0; 1 < notes.size(); i++) {
System.out.println (notes.get (1))

for each value of i less than the size of the collection, print the
next note, and then increment i

Topic list

Grouping Objects

— Developing a basic personal notebook project using Collections
e.g. ArraylList

Indexing within Collections
— Retrieval and removal of objects

Generic classes e.g. ArrayList

lteration
— Using the for loop

— Using the while loop

— Using the for each loop
— Using the Iterator

Coding a Shop Project that stores an ArrayList of Products.

while loop: pseudo code

[General form of a while loop]

[while keyword 1

\ /{ boolean test 1

while(/oop condition) { (
loop body < LStatements to be repeated}
}

Pseudo-code expression of the actions of
a while loop

while we wish to continue, do the things in the loop body

while loop: construction

Declare and initialise loop control variable (LCV)
while(condition based on LCV)

{
“do the job to be repeated”

“update the LCV”

This structure should always be used

while loop: flowchart

boolean
expression?

false

true

» | statement(s)

inti=1;

while (i <= 10)

{
System.out.printin(i);
i++;

while loop: iterating over a collection

/**
* T,ist all notes 1n the notebook.
*/
public void listNotes ()
{
int 1 = 0;
while (1 < notes.size()) {

r

System.out.println(notes.get (1)

)
' . < ()
1++; Increment i
L by 1

while the value of i is less than the size of the collection, print
the next note, and then increment i

for versus while

/*"k . e o
* TList all notes in the notebook. Varlable LIS the Loop
A Control Variable (LCV).
public void listNotes () L. .
{ It must be initialised,
for(int 1= 0; 1 < notes.size(); 1++) {
System.out.println(notes.get (1)) ; tEStEd and ChangEd'
} . . .
: inti=0is the
/% initialisation.
* List all notes in the notebook.
*/
public void listNotes () I < notes.size() is the
{
int 1 = 0; tESt'
while (1 < notes.size()) {
System.out.println (notes.get (1)) ; . .
e i++ is the post-body
| } action i.e. the change.

Topic list

* Grouping Objects

— Developing a basic personal notebook project using Collections
e.g. ArraylList

* |ndexing within Collections
— Retrieval and removal of objects

* Generic classes e.g. ArrayList

* [teration
— Using the for loop
_ Usine tl hile |

— Using the for each loop

— Using the Iterator
* Coding a Shop Project that stores an ArrayList of Products.

for each loop: pseudo code

[General form of the for-each loop]

for k }
[or GQ / loop header]\
for(ElementType element : collection) {
loop body
}
\{Statement(s) to be repeated}

Pseudo-code expression of the actions
of a for-each loop

For each element in collection, do the things in the loop body.

for each loop: iterating over a collection

/':lr*k

* T,1st all notes 1n the notebook.

*/

public vold listNotes()

{

for (String note : notes) {

System.out.println (note);

for each note in notes, print out note

for each loop

* Can only be used for access; you can’t remove
the retrieved elements.

* Can only loop forward in single steps.

e Cannot use to compare two collections.

for each versus while

* for-each:
— easier to write.
— safer: it is guaranteed to stop.

* while:
— we don’t have to process the whole collection.
— doesn’t even have to be used with a collection.
— take care: could be an infinite loop.

Topic list

Grouping Objects

— Developing a basic personal notebook project using Collections
e.g. ArraylList

Indexing within Collections

— Retrieval and removal of objects
Generic classes e.g. ArrayList
Iteration

— Using the for loop

— Using the while loop
— Using the for each loop

— Using the Iterator

Coding a Shop Project that stores an ArrayList of Products.

Defines a protocol
for iterating

through a
;{>ublic interface Iterator CO”eCtiOn.
/**

* Returns whether or not the underlying collection has next
* element for iterating.

*/

boolean hasNext () ;

Ilterator

/**

* Returns next element from the underlying collection.
*/
Object next (),

/**

* Removes from the underlying collection the last element returned
by next.
*/

vold remove () ;

ite ratOr Attach an iterator

We will use this iterator object
to traverse our ArrayLlist and
retrieve each note in turn.

object to our notes
ArrayList.

{

ITterator 1terator

{

String note =

\
public Void\{istNotes()

/

notes.iterator () ;

while (i1terator.hasNext())

(String) iterator.next():;

System.out.println (note);

iterator

hasNext() returns true if the iterator for notes has more
elements to view. This method only checks that there are
more items; it doesn’t retrieve any items.

N\

public void NstNotes ()
{

Tterator iterat = notes.iterator();

while (i1terator.hasNext())

{
String note = (String) 1iterator.next():;
System.out.println (note);

iterator

next() returns the next element from the notes iterator.
However, we need to cast the returned element as String
because we didn’t type our Iterator.

public void listNotes ()
{

Tterator iterator = notes.iterator():;
while (1terator.hasNext ())

{ L

String note = (String) 1iterator.next():;

System.out.println (note);

iterator

Let’s type our Iterator so that we don’t have to cast the
retrieved elements...they will now be Strings.

N\ /

public void\{iiENotes()
{

System.out.println (note);

Topic list

Grouping Objects

— Developing a basic personal notebook project using Collections
e.g. ArraylList

Indexing within Collections

— Retrieval and removal of objects
Generic classes e.g. ArrayList
lteration

— Using the for loop

— Using the while loop

— Using the for each loop
— Using the Iterator

Coding a Shop Project that stores an ArrayList of Products.

A basic example of a Shop

A Store has an
ArrayList of Product.

Product

Product class

Our Product class contains
four instance variables

public class Product

{

private String productName;

private int productCode;

private double unitCost;

private boolean inCurrentProductLine;

The constructor uses the data passed

P rOd uct CIaSS in the four parameters to update the

instance fields.

public Product (String productName, int productCode,

double unitCost, boolean inCurrentProductLine) {
this.productName = productName;
if ((productCode >= 1000) && (productCode <= 9999)) {
this.productCode = productCode;
}
else(
System.out.println ("Product code must be between 1000 and 9999."
+ " Setting a default code of 1.");
this.productCode = 1;
}
if (unitCost > 0){

this.unitCost = unitCost;
}
else(
System.out.println ("Unit cost must be greater than zero.");

}

this.inCurrentProductLine = i1nCurrentProductLine;

The class has getters for
Product class each instance field.

public String getProductName () {

return productName;

public double getUnitCost () {
return unitCost;

public int getProductCode () {
return productCode;

public boolean 1sInCurrentProductLine ()

return 1nCurrentProductLine;

{

Product class each instance field.

The class has setters for

public void setProductCode (int productCode) {
((productCode >= 1000) && (productCode <= 9999)) {
this.productCode = productCode;

if

}

else{

System.out.println ("Product code is not between 1000 and 9999."
+ " You entered: " + productCode) ;

public void setUnitCost (double unitCost) {

1f (unitCost > 0){

this.unitCost = unitCost;
}
else{
System.out.println ("Unit cost must be greater than zero.");

}

public void setInCurrentProductLine (boolean inCurrentProductLine) {

this.inCurrentProductlLine = inCurrentProductLine;

public void setProductName (String productName) {

this.productName = productName;

Product class: toString()

* Let’s now add a toString() method.

e Java has a special method with the signature:
public String toString()

* You use this method to return a String that
represents an object’s state, in a user-friendly
mannetr.

Product class: toString()

/**

* Returns a user-friendly string representation of the Product object
*

* @return User-friendly String representing the current Product
*/
public String toString() {

return "Product name: " + productName
+ "\nProduct code: " + productCode
+ "\nUnit cost: " + unitCost
+ "\nIn current product line: " + inCurrentProductLine;

We will call this method from the Store class
that we will construct over the next few slides.

Product class: toString()

* When you print an object using code similar to
System.out.printin(someObject), java will
check the class for a toString method.

* |f the toString() method:

— exists, java will automatically call it and the user
friendly object state will be printed.

— doesn’t exist, java will print the class name
followed by the memory location of the object.

A basic example of a Shop

A Store has an
ArrayList of Product.

Product

Store class

* The Store class will contain:
1. an ArraylList of Product.
2. a method to add Products to the ArrayList.

3. a method to print out the contents of the
ArrayList.

4. a method that will print out the cheapest
product in the ArraylList.

Store class

* The Store class will contain:
an ArrayList of Product.
a method to add Products to the ArraylList.

3. a method to print out the contents of the
ArrayList.

4. a method that will print out the cheapest
product in the ArraylList.

1. Declaring an ArrayList of Product

import java.util.ArrayList;

public class Store

{

private ArrayList<Product> products;

public Store()
{

products = new ArrayList<Product> ();

)

1. Declaring an ArrayList of Product

importing the
ArrayList class so
we can use it.

declaring an
ArrayList of
Product as a
private instance
variable.

calling the
constructor of the
ArrayList class to
build the ArrayList
object.

Bort java.util.ArrayList;

public class Store

{

> private ArrayList<Product> products;

public Store()
{

> products = new ArrayList<Product> ();

}

Store class

* The Store class will contain:
1. an ArraylList of Product.
2. a method to add Products to the ArrayList.

3. a method to print out the contents of the
ArrayList.

4. a method that will print out the cheapest
product in the ArraylList.

2. Add a Product object to an ArrayList of

Product
public void add (Product product)
{
products.add (product);

}
add: This is add Product: The ArraylList
method from the holds objects of this
ArraylList class that we type, Product.

just imported.
product: This is object

products: This is the of type Product that
ArrayList of Product. we want to add to the
ArraylList.

2. Add a Product object to an ArrayList of
Product

import java.util.ArrayList;
public class Store{
private ArrayList<Product> products;

public Store(){
products = new ArrayList<Product> ();

}

public void add (Product product){
products.add (product);

}

Store class

* The Store class will contain:
an ArrayList of Product.
a method to add Products to the ArraylList.

3. a method to print out the contents of the
ArrayList.

4. a method that will print out the cheapest
product in the ArraylList.

3. Printing all Products in an ArrayList of Product

public void listProducts(){
for (Product product: products){
System.out.printIn(product.toString());

}

Product: This is
the type of
object that is
stored in the
ArrayList.

product: This is object products: This is
reference pointing to the the ArrayList of
current object we are looking Product.

at in the ArrayList. As we

iterate over each object in the

ArrayLlist, this reference will

change to point to the next

object, and so on.

Store class

* The Store class will contain:
1. an ArraylList of Product.
2. a method to add Products to the ArrayList.

3. a method to print out the contents of the
ArrayList.

4. a method that will print out the cheapest
product in the ArraylList.

Finding the Cheapest Product

4 Product.java
4 3 Product
o inCurrentProductLine
o productCode

a

preductMame

unitCost

Product(5tring, int, double, boolean)
getProductCode() : int
getProductMamel] : String
getUnitCost(} : double
iIsInCurrentProductLine() : boolean

setinCurrentProductLine(boelean) : void
setProductCodelint) : void
setProductMame(String) : void
setUnitCost{double) : void

@ toString() : String

¢ ¢ 0 0 0|00 O 0o

Finding the Cheapest Product

1.

If products have been added to the ArrayList
1.1 Assume that the first Product in the ArrayList is the cheapest
(set a local variable to store this object).
1.2 For all product objects in the ArrayList
1.2.1 if the current product cost is lower than the cost of
the product object stored in the local variable,
1.2.1.1 update the local variable to hold the
current product object.
end if
end for
1.3 Return the name of the cheapest product.
else
1.4 Return a message indicating that no products exist.

end if

Finding the Cheapest Product

Working on the outer if statement

if products have been added to the ArrayList
// return the cheapest product
else
return a message indicating that no products exist.
end if

How do we write the
code for this algorithm?

Finding the Cheapest Product

Working on the outer if statement

if products have been added to the ArrayList
//return the cheapest product
else
return a message indicating that no products exist.
end if

if (products.size() > 0){

//return the cheapest product
}
else{

return “No products added to the ArrayList”;

Working on step 1.1

if products have been added to the ArrayList
// 1.1 Assume that the first Product in the ArrayList is the
// cheapest (set a local variable to store this object).

else
return a message indicating that no products exist.

end if

How do we write the
code for this step?

Working on step 1.1

if products have been added to the ArrayList
// 1.1 Assume that the first Product in the ArrayList is the
// cheapest (set a local variable to store this object).

else
return a message indicating that no products exist.

end if

if (products.size() > 0){
Product cheapestProduct = products.get(0);

}

else{

return “No products added to the ArrayList”;

-

Working on the for loop

if products have been added to the ArrayList
// 1.1 Assume that the first Product in the ArrayList is the
// cheapest (set a local variable to store this object).
// 1.2 For all product objects in the ArrayList
// determine the cheapest product
// end for
else

return a message indicating that no products exist.
end if

How do we write the
code for this step?

Working on the for loop

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products)

{
}

else{
return “No products added to the ArrayList”;

Working on the code inside the for loop

1. If products have been added to the ArrayList
1.1 Assume that the first Product in the ArrayList is the cheapest
(set a local variable to store this object).
1.2 For all product objects in the ArrayList
1.2.1 if the current product cost is lower than the cost of
the product object stored in the local variable,
1.2.1.1 update the local variable to hold the
current product object.
end if
end for
1.3 Return the name of the cheapest product.

else
1.4 Return a message indicating that no products exist.

end How do we write the
code for this?

Working on the code inside the for loop

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products){
if (product.getUnitCost() < cheapestProduct.getUnitCost())

{
)
J
}

else{
return “No products added to the ArrayList”;

}

Working on the code inside the for loop

1. If products have been added to the ArrayList
1.1 Assume that the first Product in the ArrayList is the cheapest
(set a local variable to store this object).
1.2 For all product objects in the ArrayList
1.2.1 if the current product cost is lower than the cost of
the product object stored in the local variable,
1.2.1.1 update the local variable to hold the
current product object.
end if
end for
1.3 Return the name of the cheapest product.

else
1.4 Return a message indicating that no products exist.

end ™ How do we write the
code for this step?

Working on the code inside the for loop

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products){
if (product.getUnitCost() < cheapestProduct.getUnitCost()){
cheapestProduct = product;

}
}
}

else{
return “No products added to the ArrayList”;

)

Working on the last step, 1.3

1. If products have been added to the ArrayList
1.1 Assume that the first Product in the ArrayList is the cheapest
(set a local variable to store this object).
1.2 For all product objects in the ArrayList
1.2.1 if the current product cost is lower than the cost of
the product object stored in the local variable,
1.2.1.1 update the local variable to hold the
current product object.
end if
end for
1.3 Return the name of the cheapest product.
else
1.4 Return a message indicating that no products exist.

end ™ How do we write the
code for this step?

Working on the last step, 1.3

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products){
if (oroduct.getUnitCost() < cheapestProduct.getUnitCost()){
cheapestProduct = product;

}
}
return cheapestProduct.getProductName();
}
else{
return “No products added to the ArrayList”;

}

Questions?

Review

Collections allow an arbitrary number of
objects to be stored.

Class libraries usually contain tried-and-tested
collection classes.

Java’s class libraries are called packages.

We have used the ArravyList class from the
java.util package.

Review

ltems may be added and removed.
Each item has an index.

Index values may change if items are removed
(or further items added).

The main ArrayList methods are add,
get, remove and size.

ArrayList is a parameterized or generic
type.

Review

* Loop statements allow a block of statements
to be repeated.

* The for-each loop allows iteration over a
whole collection.

* The while loop allows the repetition to be
controlled by a boolean expression.

@ O®

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http-//
creativecommons.orgflicenses/by-nc/3.0/

N
\&/

|
ﬂl -
T ey fai
i

Waterford Institute of Technology Department of Computing and Mathematics
INSTITIUID TEICNEOLAIGCHTA PHORT LAIRGE http://www.wit.ie/

