
Some Miscellaneous Items

Produced by: Dr. Siobhán Drohan

Department of Computing and Mathematics
http://www.wit.ie/

Static, Javadoc, Debugger, Compound Stmts

Topic List

• Typical Compilation Errors

• Multiple Constructors

• Static Variables

• Static Methods

• Javadoc (annotations)

• Storing calculated data

• Debugger

• Compound Assignment Statements

Typical compilation (syntax) errors

What is wrong

here? Can you

spot the 5 errors?

public class CokeMachine

{

 private price;

 public CokeMachine()

 {

 price = 300

 }

 public int getPrice

 {

 return Price;

 }

Typical compilation (syntax) errors

public class CokeMachine

{

 private price;

 public CokeMachine()

 {

 price = 300

 }

 public int getPrice

 {

 return Price;

 }
}

;

()

int

-

Topic List

• Typical Compilation Errors

• Multiple Constructors

• Static Variables

• Static Methods

• Javadoc (annotations)

• Storing calculated data

• Debugger

• Compound Assignment Statements

Default constructor

• A default constructor has NO parameters e.g.:

 public Square()

• If no constructor is defined in a class, java
automatically defines a default constructor
(note: it is not visible in your written code).

Multiple constructors

• A class can have multiple constructors.

• To have multiple constructors, the parameter
list for each constructor must be different.

• Multiple constructors allow you to initialise an
object in several different ways.

Valid constructors in a Square class

public Square (int height)

public Square (int height, int width)

public Square (int height, int width,

 String colour)

public Square (String colour,

 int xPosition,

 int yPosition)

Invalid constructors in a Square class

public Square (int height)

public Square (int width) /* this one is invalid as a

constructor with a single int parameter has already been

defined above. The name of the parameter is different,

but Java doesn’t look at this…it is only interested in the

type.*/

public Square (String colour, int height, int width)

public Square (String colour, int xPosition,

 int yPosition)

/* this one is invalid as a constructor with a parameter

list of (String, int, int) has already been defined just

above it.*/

Topic List

• Typical Compilation Errors

• Multiple Constructors

• Static Variables

• Static Methods

• Javadoc (annotations)

• Storing calculated data

• Debugger

• Compound Assignment Statements

Instance vs Static (Class) Variables

• When a number of objects are created from the
same class blueprint, they each have their own
distinct copies of instance variables.

• Sometimes, you want to have variables that are
common to all objects. This is accomplished with
the static modifier.

• Fields that have the static modifier in their
declaration are called static fields or class
variables.

https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html

https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html
https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html

Instance vs Static (Class) Variables

private static int gravity;

Constants

private static final int GRAVITY = 3;

• private: access modifier, as usual

• static: class variable

• final: constant (cannot change the value).
Naming standards for final fields is all capitals.

Topic List

• Typical Compilation Errors

• Multiple Constructors

• Static Variables

• Static Methods

• Javadoc (annotations)

• Storing calculated data

• Debugger

• Compound Assignment Statements

Static Methods

• Java supports static methods as well as static
variables.

• Static methods, which have the static modifier
in their declarations, should be invoked with
the class name, without the need for creating
an instance of the class, as in

 ClassName.methodName(args)

Static Methods

A common use for static
methods is to access
static fields.

For example, we could
add a static method to
the BouncingBall class to
access the gravity static
field:

public static int getGravity()
{
 return gravity;
}

Topic List

• Typical Compilation Errors

• Multiple Constructors

• Static Variables

• Static Methods

• Javadoc (annotations)

• Storing calculated data

• Debugger

• Compound Assignment Statements

Writing class documentation

• Your own classes should be documented the
same way library classes are.

• Other people should be able to use your class
without reading the implementation.

• Make your class a 'library class'!

Elements of documentation

Documentation for a class should include:

• the class name

• a comment describing the overall purpose and
characteristics of the class

• a version number

• the authors’ names

• documentation for each constructor and each
method

Elements of documentation

The documentation for each constructor and method
should include:

• the name of the method

• the return type

• the parameter names and types

• a description of the purpose and function of the
method

• a description of each parameter

• a description of the value returned

javadoc

• The comment start symbol must be of this format in
order to be recognised as a javadoc comment: /**

• Such a comment immediately preceding the:
– class declaration is read as a class comment.
– method signature is read as a method comment.

• Other special key symbols for formatting

documentation include:
@version
@author
@param
@return

Javadoc – class comment

/**

 * The Responder class represents a response

 * generator object. It is used to generate an

 * automatic response.

 *

 * @author Michael Kölling and David J. Barnes

 * @version 1.0 (30.Mar.2006)

 */

public class Responder

{

Javadoc – method comment

/**

 * Read a line of text from standard input (the text

 * terminal), and return it as a set of words.

 *

 * @param prompt A prompt to print to screen.

 * @return A set of Strings, where each String is

 * one of the words typed by the user

 */

public HashSet<String> getInput(String prompt)

{

 ...

}

Topic List

• Typical Compilation Errors

• Multiple Constructors

• Static Variables

• Static Methods

• Javadoc (annotations)

• Storing calculated data

• Debugger

• Compound Assignment Statements

The danger lurking
within!

Calculated data

public class Employee
{
 private double salary;
 private double deductions;
 private double netSalary;

 //code omitted

 public void calculateNetSalary()
 {
 netSalary = salary – deductions;
 }
 public void setSalary(double salary)
 {
 this.salary = salary;
 }
}

netSalary is calculated data.
 what happens when we call
the setSalary mutator? Is the
netSalary field updated?

DATA INTEGRITY WARNING:
• netSalary can contain stale

data.
• There is no need to have a

netSalary variable; it can
always call the netSalary
method to get this value.

• We need to re-write
calculateNetSalary() to
reflect this.

Calculated data

public class Employee
{
 private double salary;
 private double deductions;
 :
 public double calculateNetSalary()
 {
 return (salary – deductions);
 }

 public void setSalary(double salary)
 {
 this.salary = salary;
 }
}

netSalary is no longer declared.

calculateNetSalary () now
returns the result of the
calculation.

 No calculated data is stored,
so no stale data!

Topic List

• Typical Compilation Errors

• Multiple Constructors

• Static Variables

• Static Methods

• Javadoc (annotations)

• Storing calculated data

• Debugger

• Compound Assignment Statements

Debugger

• Errors in programs are called bugs. A
debugger can be used to fix bugs; hence the
name debugger!

• Most IDEs come with a debugger; BlueJ has
one.

• Demo of the debugger in BlueJ

Debugger

• A debugger is a software tool that helps in
examining how an application executes.

• It lets programmers execute an application
one statement at a time.

• It typically provides functions to stop and start
a program at selected points in the source
code, and to examine the values of variables.

Debugger - instructions

• Set a breakpoint on an
executable statement
(by clicking on the line
number).

• To stop our program at
this particular
breakpoint, we need to
create an instance of
the NumberDisplay
object:
– As the ClockDisplay

class creates two
instances of
NumberDisplay, we will
create an instance of
ClockDisplay.

Debugger - instructions

Debugger - instructions

Execution is stopped prior to
executing the breakpoint line

Debugger - instructions

Clicking the Step button executes the line
of code at the current breakpoint. Note

how the instance field state has changed.

Debugger - instructions

Clicking ClockDisplay in the Call Sequence
section will show where your breakpoint code
was called from. Click NumberDisplay again.

Debugger - instructions

Clicking the Continue button will run the code up to
the next breakpoint. If there is no breakpoint, it will

continue to the end of the program.

Debugger - instructions

Use the StepInto button when your breakpoint is
on a method call and you would like to step into
that method call to execute the code line by line.

Debugger - instructions

Use the Terminate button to exit the program and
stop all processing.

Debugger

• Debuggers are especially useful when your program
contains logical errors.

– Logical errors are errors that the compiler will not pickup

but that lead to incorrect results e.g. if your syntax is
correct but the logic of your problem solution is faulty.

• Using the debugger, you can trace how each of the
calculations and changes made to fields/variables
happen and hopefully figure where the error is
occurring.

Topic List

• Typical Compilation Errors

• Multiple Constructors

• Static Variables

• Static Methods

• Javadoc (annotations)

• Storing calculated data

• Debugger

• Compound Assignment Statements

Compound assignment statements

balance += amount;

 is shorthand for

 balance = balance + amount;

balance -= amount;

 is shorthand for

 balance = balance - amount;

Compound assignment statements

Full statement Shortcut

Mathematical
shortcuts

x = x + a; x += a;

x = x - a; x -= a;

x = x * a; x *= a;

x = x/a; x /=a;

Increment shortcut x = x+1; x++;

Decrement shortcut x = x - 1; x--;

Questions?

Department of Computing and Mathematics
http://www.wit.ie/

