
Abstraction and Modularization

Produced by: Dr. Siobhán Drohan
(based on Chapter 3, Objects First with Java - A Practical
Introduction using BlueJ, © David J. Barnes, Michael Kölling)

Department of Computing and Mathematics
http://www.wit.ie/

Object Interaction

Topic List

• Divide and conquer: Abstraction and
modularization.

• Demo of the digital clock-display project.

• Class and object diagrams.

• Implementing the clock display.

• Concepts covered in the clock-display project.

• Review of certain methods in the clock-display
project.

Divide and Conquer Principle

• Applies to all problem solving.
– Break down problem into parts small enough to

solve.

– Attack each sub-problem separately.

– Combine the sub-problem solutions to solve the
overall problem.

• In programming, this is where abstraction and
modularization comes in!

https://www.safaribooksonline.com/library/view/learning-php-design/9781449344900/ch01.html

https://www.safaribooksonline.com/library/view/learning-php-design/9781449344900/ch01.html
https://www.safaribooksonline.com/library/view/learning-php-design/9781449344900/ch01.html
https://www.safaribooksonline.com/library/view/learning-php-design/9781449344900/ch01.html
https://www.safaribooksonline.com/library/view/learning-php-design/9781449344900/ch01.html
https://www.safaribooksonline.com/library/view/learning-php-design/9781449344900/ch01.html
https://www.safaribooksonline.com/library/view/learning-php-design/9781449344900/ch01.html

Abstraction

• Abstraction

– the ability to ignore details of parts to focus
attention on a higher level of a problem i.e. the
bigger picture...the dinosaur!

https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/

https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/

Why Abstraction?

• We don’t need to know the individual details
of something that is already built for us; we
just need to know how to use it.

• For example:

– we have used the Canvas class without needing to
know how it was coded.

https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/

https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/

Modularization

• Modularization

– Decompose the problem into smaller sub
problems that can be solved separately.

https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/

https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/
https://reachmnadeem.wordpress.com/2014/05/15/very-basic-object-oriented-concepts/

Why Modularization?

• Trivial problems (like TicketMachine) can be
solved in a single class.

• As systems become more complex, one class is
just not enough.
 In these cases, identify subcomponents in the

problem that can be turned into separate classes.

 For example:
our Shapes project had many classes i.e. Canvas,
Square, Circle, etc.

https://www.safaribooksonline.com/library/view/learning-php-design/9781449344900/ch01.html

https://www.safaribooksonline.com/library/view/learning-php-design/9781449344900/ch01.html
https://www.safaribooksonline.com/library/view/learning-php-design/9781449344900/ch01.html
https://www.safaribooksonline.com/library/view/learning-php-design/9781449344900/ch01.html
https://www.safaribooksonline.com/library/view/learning-php-design/9781449344900/ch01.html
https://www.safaribooksonline.com/library/view/learning-php-design/9781449344900/ch01.html
https://www.safaribooksonline.com/library/view/learning-php-design/9781449344900/ch01.html

demo

The digital clock-display project

Modularizing the clock display

One four-digit display?

Or two two-digit displays?

Class diagram

ClockDisplay: object diagram

ClockDisplay: object diagram

Implementation - NumberDisplay

public class NumberDisplay

{

 private int limit;

 private int value;

 //Constructors and

 //methods omitted.

}

Implementation - ClockDisplay

public class ClockDisplay

{

 private NumberDisplay hours;

 private NumberDisplay minutes;

 //Constructors and

 //methods omitted.

}

Some concepts in the…

• NumberDisplay source code:
– Modulo operator
– Logical operators

• ClockDisplay source code:
– Objects creating objects
– null
– Multiple constructors
– Internal method calls
– External method calls
– Dot notation

The modulo operator

• The 'division' operator (/), when applied to int
operands, returns the result of an integer division.

• The 'modulo' operator (%) returns the remainder of an
integer division.

– In Maths:

 17 / 5 = result 3, remainder 2

– In Java:
 17 / 5 = 3
 17 % 5 = 2

Modulo in the NumberDisplay class

Modulo in the NumberDisplay class

Arithmetic operators

• So far, we have seen how to add (+) and
subtract (-) e.g.:

balance = balance + amount;

balance = balance – price;

value = (value + 1) % limit;

• Examples of multiply (*) and divide (/):
totalCost = unitCost * numberOfItems;

average = sum / numberOfItems;

Order of evaluation

• Brackets ()

• Multiplication (*)

• Division (/)

• Addition (+)

• Subtraction (-)

BoMDAS

Beware My Dear Aunt Sally

Note: The modulo
operator is just

between Division
and Addition.

Order of evaluation

• Brackets ()

• Multiplication (*)

• Division (/)

• Addition (+)

• Subtraction (-)

BoMDAS

Beware My Dear Aunt Sally

Quick Quiz:

7 * (4 - 3) + 1
(6 / 2) + (4 - 2) * (2 * 2)

Order of evaluation

• Brackets ()

• Multiplication (*)

• Division (/)

• Addition (+)

• Subtraction (-)

BoMDAS

Beware My Dear Aunt Sally

Quick Quiz:

7 * (4 - 3) + 1 = 8
(6 / 2) + (4 - 2) * (2 * 2) = 11

Recap: Logical operators

• Logic operators operate on boolean values.

• They produce a new boolean value as a result.

• The most important ones are:

&& (and)

|| (or)

! (not)

Recap: Logical operators

a && b (and)

• This evaluates to true if both a and b are true.

• It is false in all other cases.

a || b (or)

• This evaluates to true if either a or b or both are
true, and false if they are both false.

!a (not)

• This evaluates to true of a is false, and false if a is
true.

Recap: Logical operators - quiz

int a = 5;

int b = 10;

int c = 7;

(a > b) && (a < c)

(a < b) || (c < a)

!(b < a) && (c > b)

Note: Try these yourself in the code pad in BlueJ

&& in the NumberDisplay class

Mutator method for value field.

Objects creating objects

Objects creating objects

Declaring two object-
type instance fields

Instantiating the
hours and minutes
objects.

Objects creating objects

NumberDisplay is the other
class in our clock-display
project…it is the type of our
variables, hours and minutes.

hours and minutes are
the names of the
instance fields of type
NumberDisplay.
Each holds a reference
to the object of type
NumberDisplay.

Objects creating objects

NumberDisplay(24) is a call
to the constructor in the
NumberDisplay class,
passing an actual parameter
of 24 into the constructor.
The call to this constructor
creates an object of type
NumberDisplay.

Primitive types vs. object types

32

object type

primitive type

private NumberDisplay hours;

hours = new NumberDisplay(24);

int i;

Quiz: What is the output?

• int a;

int b;

a = 32;

b = a;

a = a + 1;

System.out.println(b);

• Person a;

Person b;

a = new Person("Everett");

b = a;

a.changeName("Delmar");

System.out.println(b.getName());

Primitive types vs. object types

32

ObjectType a;

int a;

ObjectType b;

32

int b;

b = a;

null

• null is a special value in Java.

• All object variables are initialised to null.

• null means that the object variable does not have a
reference e.g. str2 below.

“Hello World!”

String str1; String str2;

null

• null is a special value in Java.

• All object variables are initialised to null.

• You can assign and test for null:

private NumberDisplay hours;

if(hours == null) { ... }

hours = null;

Multiple constructors

Initialises the starting
time to 00:00

Initialises the
starting time
to the user

input

Multiple constructors

• In the ClockDisplay class, we have two
constructors.

• Each constructor initialises a clock display in a
different way.

• We can have as many constructors as our
design requires, ONCE they have unique
parameter lists.

• We are overloading our constructor.

Multiple constructors - Overloading

Overloading happens when you have

more than one method of the same name

as long as each has

a distinctive set of parameter types

Internal method calls

This is an internal
method call…

…to this
method that
exists in the
same class,

ClockDisplay.

Internal method calls have the syntax: methodname (parameter-list)

External method calls

 public void timeTick()
 {
 minutes.increment();
 if(minutes.getValue() == 0) { // it just rolled over!
 hours.increment();
 }
 updateDisplay();
 }

This timeTick()
method is written in

the ClockDisplay class.

Each method call is highlighted in red
above is an external method call.

External method calls

 public void timeTick()
 {
 minutes.increment();
 if(minutes.getValue() == 0) {
 hours.increment();
 }
 updateDisplay();
 }

ClockDisplay class:
• minutes.increment() is a method call.
• minutes is a NumberDisplay object.
• increment() method is written in the

NumberDisplay class.
• minutes.increment(), invokes the

increment() method over the
minutes object (which is of type
NumberDisplay).

Each method call is highlighted in red
above is an external method call.

External method calls

• As the increment() method is written in a different class to

the call of the method, we call it an external method call.

• A method call to a method of another object is called an

external method call.

• External method calls have the syntax:

 object.methodname (parameter-list)

Dot Notation

• Methods can call methods of other objects using dot
notation.

• This syntax is known as dot notation:
object.methodname (parameter-list)

• It consists of:

– An object
– A dot
– A method name
– The parameters for the method

Questions?

Review

• Divide and conquer; break down problem into parts small
enough to solve.

• Abstraction is the ability to ignore details of parts to focus
attention on a higher level of a problem i.e. the bigger
picture.

• Modularization is the process of dividing a large problem
into smaller parts.

• Class diagram - shows classes of an application and the
relationships between them. It represents a static view of
the program.

• Object diagram - shows the objects and their relationships
at one moment in time during the execution of an
application. It gives information about objects at runtime.

Review

• The 'modulo' operator (%) returns the remainder
of an integer division.

• Logic operators operate on boolean values. They
produce a new boolean value as a result. The
most important ones are: && (and), || (or), !
(not).

• Variables of object types store references to
objects.

• null is a special value in Java. All object variables
are initialised to null.

Review

• We can have as many constructors as our
design requires, ONCE they have unique
parameter lists. In this case, we are
overloading our constructor.

• Overloading happens when you have more
than one method of the same name as long as
each has a distinctive set of parameter types.

Review

• When the method is in the same class as the call of the
method, we call it an internal method call. Internal
method calls have the syntax:

 methodname (parameter-list)
• When a method call is to a method of another object is

called an external method call. External method calls
have the syntax:

 object.methodname (parameter-list)
• Methods can call methods of other objects using dot

notation. This syntax is known as dot notation:
 object.methodname (parameter-list)

Department of Computing and Mathematics
http://www.wit.ie/

