
Ticket Machine

Produced by: Dr. Siobhán Drohan
(based on Chapter 2, Objects First with Java - A Practical
Introduction using BlueJ, © David J. Barnes, Michael Kölling)

Department of Computing and Mathematics
http://www.wit.ie/

Variables, Parameters, Operators, Comments

Topic List

• Parameters:

– formal

– actual

• Printing from methods

• + Operator (and overloading)

• Recap demo: better ticket machine

• Variables: naming and scope

• this keyword

• Operators: Arithmetic, Relational and Logical

• Operators: Compound Assignment

• Commenting your code

Recap: Constructors with parameters

Recap:
• A constructor is a

special method that
is the same name as
the class.

• It “constructs” the
object i.e. creates an
instance of the class.

Recap: Constructors with parameters

When a constructor with
parameters is called, a
window will pop up
asking you to enter the
required information:

Recap: Constructors with parameters

The entered information is then used to set up the
starting state of the object:

Recap: Constructors with parameters

A constructor typically sets a starting state for an object.

Student.java

Recap: Objects as parameters

• Objects can be
passed as
parameters to
methods of
other objects.

Recap: Objects as parameters

Naïve Ticket Machine:
passing data via parameters

Parameters

• Variable names are the
formal parameters e.g.
ticketCost

• The values are the actual
parameters e.g. user-
supplied value, such as
500, is an actual
parameter. Note: actual
parameters are also
called arguments.

Topic List

• Parameters:

– formal

– actual

• Printing from methods

• + Operator (and overloading)

• Recap demo: better ticket machine

• Variables: naming and scope

• this keyword

• Operators: Arithmetic, Relational and Logical

• Operators: Compound Assignment

• Commenting your code

Printing from methods Naïve ticket machine

Printing from methods Naïve ticket machine

Topic List

• Parameters:

– formal

– actual

• Printing from methods

• + Operator (and overloading)

• Recap demo: better ticket machine

• Variables: naming and scope

• this keyword

• Operators: Arithmetic, Relational and Logical

• Operators: Compound Assignment

• Commenting your code

+ Operator Naïve ticket machine

+ operator used to
concatenate Strings

+ operator used as
an addition operator

When used between
a String and anything
else, ‘+’ is a string-
concatenation
operator i.e. it
concatenates or joins
Strings together to
create a new String.

When used between
two numeric types, it
is an arithmetic
addition operator.

+ Operator Naïve ticket machine

Operator overloading

+ Operator
examples

(BlueJ
CodePad)

Topic List

• Parameters:

– formal

– actual

• Printing from methods

• + Operator (and overloading)

• Recap demo: better ticket machine

• Variables: naming and scope

• this keyword

• Operators: Arithmetic, Relational and Logical

• Operators: Compound Assignment

• Commenting your code

Recap: reflecting on the ticket machines

• The naïve-ticket-machine behavior is
inadequate in several ways:

– No checks on the amounts entered.

– No refunds.

– No checks for a sensible initialization.

• How can we do better?

– We need more sophisticated behavior.

demo

better ticket machine

Topic List

• Parameters:

– formal

– actual

• Printing from methods

• + Operator (and overloading)

• Recap demo: better ticket machine

• Variables: naming and scope

• this keyword

• Operators: Arithmetic, Relational and Logical

• Operators: Compound Assignment

• Commenting your code

Variables

In Programming, variables:

• are created (defined) in your programs.

• are used to store data (whose value can
change over time).

• have a data type.

• have a name.

• are a VERY important programming concept.

Variable names…

• Are case-sensitive.

• Begin with either:

– a letter (preferable),

– the dollar sign "$", or

– the underscore character "_".

• Can contain letters, digits, dollar signs, or underscore
characters.

• Can be any length you choose.

• Must not be a keyword or reserved word e.g. int, while, etc.

• Cannot contain white spaces.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html

Variable names should be carefully chosen

• Use full words instead of cryptic abbreviations e.g.

– variables named speed and gear are much more intuitive
than abbreviated versions, such as s and g.

• If the name consists of:

– only one word, spell that word in all lowercase letters e.g.
ratio.

– more than one word, capitalise the first letter of each
subsequent word e.g. gearRatio and currentGear.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html

Variable Scope: Global

• Instance fields are one sort of
variable:

– They store values through the life
of an object.

– They are accessible throughout
the class (i.e. global).

– They are defined at the top of the
class.

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

Variable Scope: Local

• Constructors and methods can
include shorter-lived variables:

– They exist only as long as the
constructor/method is being
executed.

– They are only accessible from
within the constructor/method
(i.e. local).

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

Variable Scope Better ticket machine

Three Global
Variables

Local
Variable

Variable Scope Better ticket machine

Local
Variable

No visibility
modifier

Variable Scope Better ticket machine

Local
Variable

Scope and lifetime

• The scope of a local variable is the block it is
declared in i.e. the { }

• The lifetime of a local variable is the time of
execution of the block it is declared in i.e. the
length of time it takes for the method to run.

Topic List

• Parameters:

– formal

– actual

• Printing from methods

• + Operator (and overloading)

• Recap demo: better ticket machine

• Variables: naming and scope

• this keyword

• Operators: Arithmetic, Relational and Logical

• Operators: Compound Assignment

• Commenting your code

this keyword

Student.java

Instance fields – global scope

Local variables

this keyword

Student.java

Instance fields – global scope

Local variables

What if we
wanted to call
our local
variables the
same name as
our instance
fields?

Would this
work?

Answer is NO. We need to
use the “this” keyword.

this keyword

this keyword – the theory!

• The class Student contains three fields:
– name, id, credits

• The Student constructor takes two
parameters, also named:
– name, id

• This is called variable name overloading.
When we refer to the name variable, how
does Java know which variable we mean?

• We need a way to distinguish between them!

this keyword – the theory!

• We can use the this keyword to distinguish
between them.

• The expression this refers to the current
object.

• In the Student constructor, writing:
– this.name refers to the name field in the current

object.

– name refers to the name field in the parameter
list.

Topic List

• Parameters:

– formal

– actual

• Printing from methods

• + Operator (and overloading)

• Recap demo: better ticket machine

• Variables: naming and scope

• this keyword

• Operators: Arithmetic, Relational and Logical

• Operators: Compound Assignment

• Commenting your code

Boolean conditions

• A boolean condition is an expression that
evaluates to either true or false e.g.

• An if statement evaluates a boolean condition
and its result will determine which portion of the
if statement is executed.

Operators: Arithmetic

Arithmetic
Operator

Explanation Example(s)

+ Addition
6 + 2
amountOwed + 10

- Subtraction
6 – 2
amountOwed – 10

* Multiplication
6 * 2
amountOwed * 10

/ Division
6 / 2
amountOwed / 10

Operators: Relational

Operator Use Returns true if

> op1 > op2 op1 is greater than op2

>= op1 >= op2 op1 is greater than or equal to op2

< op1 < op2 op1 is less than to op2

<= op1 <= op2 op1 is less than or equal to op2

== op1 == op2 op1 and op2 are equal

!= op1 != op2 op1 and op2 are not equal

Source: http://www.freejavaguide.com/relational_operators.htm

Operators: examples Better ticket machine

Operators: Logical

• Logic operators operate on boolean values.

• They produce a new boolean value as a result.

• The ones that we will use are:

&& (and)

|| (or)

! (not)

Operators: Logical

a && b (and)
– This evaluates to true if both a and b are true.

– It is false in all other cases.

a || b (or)
– This evaluates to true if either a or b or both are

true, and false if they are both false.

!a (not)
– This evaluates to true of a is false, and false if a is

true.

Operators: Logical - quiz

What is the result of each of
these boolean expressions:

(a > b) && (a < c)

(a < b) || (c < a)

!(b < a) && (c > b)

int a = 5;
int b = 10;
int c = 7;

Topic List

• Parameters:

– formal

– actual

• Printing from methods

• + Operator (and overloading)

• Recap demo: better ticket machine

• Variables: naming and scope

• this keyword

• Operators: Arithmetic, Relational and Logical

• Operators: Compound Assignment

• Commenting your code

Operators: Compound Assignment

balance += amount;

is shorthand for

balance = balance + amount;

balance -= amount;

is shorthand for

balance = balance - amount;

Topic List

• Parameters:

– formal

– actual

• Printing from methods

• + Operator (and overloading)

• Recap demo: better ticket machine

• Variables: naming and scope

• this keyword

• Operators: Arithmetic, Relational and Logical

• Operators: Compound Assignment

• Commenting your code

Commenting your code

• Comments are lines of text added to source
code to provide explanations to human
readers e.g.

• Comments have no effect on the functionality
of a class.

Commenting your code

A single-line comment
is introduced by the
two characters ‘//’,
which are written with
no spaces between
them.

Comments beginning
with ‘/**’ and ending
with ‘*/’ are called
Javadoc comments and
we will discuss these in
a later lecture.

Commenting your code

More detailed
comments, often
spanning several
lines, are usually
written in the form
of multi-line
comments. These
start with the
character pair ‘/*’
and end with the
pair ‘*/’.

Questions?

Study aid: Can you answer these questions?

• What is the purpose of parameters in Constructors?
• What is meant by passing Objects as parameters?
• What are formal parameters?
• What are actual parameters/arguments?
• What does String concatenation mean?
• What does operator overloading mean? Can you name

two uses of the + operator?
• What is meant by variable scope?
• What is meant by the lifetime of a variable?
• What is the accepted naming convention for Java

Variables?

Study aid: Can you answer these questions?

• How do you print to the console?

• What is the this keyword used for?

• What is the purpose of comments in source code?

• How do you write a single-line comment?

• How do you write a multi-line comment?

• How do you write a Javadoc comment?

Study aid: Can you answer these questions?

• What are

– Arithmetic operators?

– Relational operators?

– Logical operators?

– Compound Assignment operators?

• Can you write a Java code fragments using these
operators?

Department of Computing and Mathematics
http://www.wit.ie/

