Ticket Machine

Variables, Parameters, Operators, Comments

Produced by: Dr. Siobhdn Drohan

(based on Chapter 2, Objects First with Java - A Practical
Introduction using BlueJ, © David J. Barnes, Michael Kolling)

@ Waterford Institute of Technology Department of Computing and Mathematics

S INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/

Topic List

e Parameters:
— formal

— actual

* Printing from methods

* + Operator (and overloading)

 Recap demo: better ticket machine

* Variables: naming and scope

* this keyword

e QOperators: Arithmetic, Relational and Logical
e Operators: Compound Assignment

e Commenting your code

Recap: Constructors with parameters

<A BlueJ: lab-classes — O X Re ca p .

Project Edit Tools View Help

* A constructoris a
— F N special method that
== is the same name as
a the class.
- |t “constructs” the
= - _ object i.e. creates an

instance of the class.

Recap: Constructors with parameters

<A Bluel: lab-classes
Project Edit Tools View Help

MNew Class...
—>
—>
Compile "
! =
| Student
L=
| 2
——
e e e

new Student{String fullMame, String studentlD)

Open Editor

Compile

Inspect

When a constructor with
parameters is called, a
window will pop up
asking you to enter the
required information:

4B Blue): Create Object X

K Create a new student with a given name and ID number.
Student{String fullName, String studentiD)

Name of Instance: studentl

new Student (| v, String fullName

) String studentID

Cancel

Recap: Constructors with parameters

The entered information is then used to set up the
starting state of the object:

| <A BlueJ: Create Object X

q{

Create a new student with a given name and /D number.
Student(String fullName, String studentiD)

Name of Instance: |student1| ‘

new Student (‘"Mary Murphy" v‘, String fullName
"20052123" ~) String studentID

| Ok | ‘ Cancel ‘

studentl : Student

private String name "Mary Murphy”] | Inspect
private String id | "20052123" | Get

private int credits | 0 |

Show static fields

Recap: Constructors with parameters

A constructor typically sets a starting state for an object.

public class Student

{ Student.java

// the student's full name

private String name;
// the student ID
private String id;
// the amount of credits for study taken so far

private int credits;

/-k*
* Create a new student with a given name and ID number.
*/
public Student (String fullName, String studentID)
{
name = fullName;
id = studentID;
credits = 0;

Recap: Objects as parameters

<A BlueJ: lab-classes —

Project Edit Tools View Help

* Objects can be = j —

Compile Z
p a S S e d a S | inherited from Object >
p a ra m Ete rS to) void enrollStudent(Student newStudent)

m et h O d S Of im.ﬂUrr.lbel-'DfStudents()
other objects.

void setlnstructor(String instructorMame)

void setRoom(String roomMNumber)

void setTime(String imeAndDayString)

labClass1: LabClass Inspect

Remove

Recap: Objects as parameters

43 BlueJ: lab-classes — O X
Project Edit Tools View Help
MNew Class... . T
— ||
_D y
compie | 42 Blue): Method Call X
A Add a student (o this LabClass.
void enrollStudent{Student newStudent)
labClass1.enrollStudent (v1)
Cancel
——]
student1: labClass1:
/ A
labClass1: LabClass
* Add a student to this LabClass.
~f
public void enrollStudent (Student newStudent)

{
//code ommitted

Naive Ticket Machine:
passing data via parameters

*2ABluel: Create Object X|
"

Create a machine that issues tickets of the given price.

Note that the price must be greater than zero, and there ticketMachine 1:
are no checks to ensure this. . :

[n
TicketMachine(int ticketCost) TicketMachine

Name of Instance: tickethachine| 1] price 500

new TicketMachine(500 v ‘) 4\

balance 0 I\
Ok ’ Cancel |
total 0
\ TicketMachine L
(A) — (constructor) /

ticketCost 500

N

Parameters

Variable names are the
formal parameters e.qg.
ticketCost

The values are the actual
parameters e.g. user-
supplied value, such as
500, is an actual
parameter. Note: actual
parameters are also
called arguments.

EXBluel: Create Object X|

Create a machine that issues tickets of the given price.
Note that the price must be greater than zero, and there
are no checks to ensure this.

TicketMachine(int ticketCost)

Name of Instance: [ticketMachine] 1 |
new TicketMachine(500 v

[Ok || Cancel |

ticketMachine 1:

TicketMachine
price 500
— W%
balance 0 N
total 0
TicketMachine /
(constructor)
ticketCost 500

.

{

public TicketMachine (int ticketCost)

price = ticketCost;
balance = 0;

total = 0;

Topic List

e Parameters:
— formal
— actual

* Printing from methods

* + Operator (and overloading)

 Recap demo: better ticket machine

* Variables: naming and scope

* this keyword

e QOperators: Arithmetic, Relational and Logical
e Operators: Compound Assignment

e Commenting your code

Printing from methods

Naive ticket machine

public voild printTicket ()

{
// Simulate the printing of a ticket.
System.out.println ("####HFHFHEHEFHER"T) ;
System.out.println("# The BluedJ Line");
System.out.println("# Ticket");
System.out.println("# " + price + " cents.");
System.out.println ("H#HHEHFHEREEEEHESEAT)
System.out.println() ;

// Update the total collected with the balance.
total = total + balance;
// Clear the balance.

balance = 0; public class TicketMachine

} {

private int price;

private int balance;

private int total;

// The price of a ticket from this machine.

// The amount of money entered by a customer so far.

// The total amount of money collected by this machine.

Printing from methods

Naive ticket machine

public void printTicket ()

{

// Simulate the printing of a ticket.
System.out.printin ("####44 44445444 4FEE") 7
System.out.println("# The Blued Line"™);
System.out.println("# Ticket");

System.out.println("# "

System.out.println ("###HHHHHFHFHFRFRAE)

System.out.println();

// Update the total collected with the balance.

total = total + balance:;
// Clear the balance.

+ price + " cents.");

balance = 0;

<% BlueJ: Terminal Window - naive-ticket-machine

Options

ticketMal : TicketMachine

private int price | 35 | = [nspect
private int balance’ 10 | Get

private inttotal | 0 |

Show static fields

FHffhhHhHEHEHHHHS
The Blued Line

Ticket

35 cents.

FA

Topic List

* Parameters:
— formal
— actual
* Printing from methods

* + Operator (and overloading)

 Recap demo: better ticket machine

* Variables: naming and scope

* this keyword

e QOperators: Arithmetic, Relational and Logical
e Operators: Compound Assignment

e Commenting your code

+ Operator

Naive ticket machine

public void printTicket ()

{

+ operator used to

System. Lorintin ("HEEFFEFEREER AT 2

System. .printIn("# The BluedJ Line™):

System. .printin("# Ticket™);

System. .println("# " + price + " cents.");|<e—
System. cprintin (" AA AR R ;

System. .printin();

total =

total + balance; <

concatenate Strings

+ operator used as

balance

0;

an addition operator

public class TicketMachine

{

private int price;

private int balance;

private int total;

+ Ope rator Naive ticket machine

public void printTicket ()

{ When used between
a String and anything

System.out.printIn ("##FFFFEFEFFEFFEFESET) (.07 *)
System.out.println("# The Blued Line"™); else, + IS a Strlng'
System.out.printl Ticket"); I
ystem:out.printin('4 Ticket!) concatenation
System.out.println("# " + price + " cents.") ;| €—————— . .
System.out.printin (" THFFTETIFRFRIRARTT ") ; operator i.e. it
System.out.printl 101
ystem-out-printin() concatenates or joins

Strings together to

total = total + balance; Create d hew Strlng.
balance = 0;
}

\ When used between

two numeric types, it
is an arithmetic
addition operator.

= Operator overloading

+ Operator
examples

(Bluel
CodePad)

<A BlueJ: naive-ticket-machine

Project Edit Tools View Help

New Class... }
S
> TicketMachine

Initialising virtual machine... Done.

4+5
9 (int)

Ilwindll + "OW"
"window" (String)

"Result:" + 6
"Result: 6" (String)

"Result:"+6 + 3
"Result: 63" (String)

int price = 500;
"#" + price + " cents"
"#500 cents" (String)

Topic List

* Parameters:
— formal
— actual
* Printing from methods
* + Operator (and overloading)

 Recap demo: better ticket machine

* Variables: naming and scope

* this keyword

e QOperators: Arithmetic, Relational and Logical
e Operators: Compound Assignment

e Commenting your code

Recap: reflecting on the ticket machines

* The naive-ticket-machine behavior is
inadequate in several ways:

— No checks on the amounts entered.
— No refunds.
— No checks for a sensible initialization.

* How can we do better?
— We need more sophisticated behavior.

demo

better ticket machine

Topic List

* Parameters:
— formal
— actual
* Printing from methods
* + Operator (and overloading)
 Recap demo: better ticket machine

* Variables: naming and scope

* this keyword

e QOperators: Arithmetic, Relational and Logical
e Operators: Compound Assignment

e Commenting your code

Variables

In Programming, variables:

e are created (defined) in your programs.

e are used to store data (whose value can
change over time).

* have a data type.
* have a name.
* are a VERY important programming concept.

Variable names...

* Are case-sensitive.

* Begin with either:
— a letter (preferable),
— the dollar sign "S", or

— the underscore character

* (Can contain letters, digits, dollar signs, or underscore
characters.

* Can be any length you choose.
 Must not be a keyword or reserved word e.g. int, while, etc.
e Cannot contain white spaces.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html

Variable names should be carefully chosen

* Use full words instead of cryptic abbreviations e.g.

— variables named speed and gear are much more intuitive
than abbreviated versions, such as s and g.

e |f the name consists of:

— only one word, spell that word in all lowercase letters e.g.
ratio.

— more than one word, capitalise the first letter of each
subsequent word e.g. gearRatio and currentGear.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html

Variable Scope: Global

* |nstance fields are one sort of

variable:
public class ClassName
{
) //Instance Fields
— They store values through the life J JConstructors
of an object. //Methods
}

— They are accessible throughout
the class (i.e. global).

— They are defined at the top of the
class.

Variable Scope: Local

e Constructors and methods can

include shorter-lived variables:

— They exist only as long as the
constructor/method is being
executed.

— They are only accessible from
within the constructor/method
(i.e. local).

public class ClassName

{
//Instance Fields

//Constructors
//Methods

Variable Scope

Better ticket machine

public class TicketMachine

{

.
price or

// The
private int price;
.-/f .-"’f

The amount
private int balance;

The total amount of

oy
T
!

private int total;

a ticket from

of money entered by a

mor

ney collected by

this machine.

)]
'_h
A3
I

customer

s —

this machine.

/**

\

Three Global
Variables

Local
Variable

* Return the money in the balance.
* The balance 1s cleared.
*/

public int refundBalance ()

{

int amountToRefund;
///’amountToRefund = balance;
07
return amountToRefund;

balance =

Va riable SCOpe Better ticket machine

Local
Variable

/**
* Return the money in the balance.

* The balance 1s cleared.
w2

ublic int refundBalance ()

return amountToRefund;

{
int amountToRefund;
amountToRefund = balance;
balance = 0;

}

Va riable SCOpe Better ticket machine

Local
Variable

/**

* Create a machine that issues/ftickets of the given price.
*/

public TicketMachine (int ticketCost)

{

price = ticketCost;
balance = 0;
total = 0O;

Scope and lifetime

* The scope of a local variable is the block it is
declared ini.e. the {}

 The lifetime of a local variable is the time of
execution of the block it is declared in i.e. the
length of time it takes for the method to run.

Topic List

* Parameters:

— formal

— actual
* Printing from methods
* + Operator (and overloading)
 Recap demo: better ticket machine
* Variables: naming and scope

* this keyword

e QOperators: Arithmetic, Relational and Logical
e Operators: Compound Assignment
e Commenting your code

this keyword

Instance fields — global scope
/

{

public class Student

// the student's full name
private String name;
// the student ID
private String id;
// the amount of creditd for study taken so far

private int credits; ___

/*-k

*/

public Student (String fullName, String studentID)

{

* Create a new student T}fh a given né&: and ID number.

Local variables

name = fullName;
id = studentID;

credits = 0;

Student.java

this keyword

What if we
wanted to call
our local
variables the
same name as

our instance
fields?

Would this
work?

Instance fields — global scope

/

public class Student

{

// the student' full name

10)]

private String name; T
// the student ID

private String id;

// the amount of creditd

private int credits;

P Local variables

* Create a new student i}%ﬁ a givi;/yéme and ID number.
*/

public Student (String name, String id)

{
name = name;
id = id;
credits = 0;

} Student.java

this keyword

public class Student
{
// the
private String
// the
private String

student's full name
name;

ID

id;

// the amount of credits

student

private int credits;
/**
*/

public Student (String name,
{

for

* Create a new student with a given name and ID number.

String id)

thils.name
this.1id

credits

namey;

0;

Answer is NO. We need to
use the “this” keyword.

this keyword — the theory!

* The class Student contains three fields:
— name, id, credits

* The Student constructor takes two
parameters, also named:
— name, id

e This is called variable name overloading.

When we refer to the name variable, how
does Java know which variable we mean?

 We need a way to distinguish between them!

this keyword — the theory!

* We can use the this keyword to distinguish
between them.

* The expression this refers to the current
object.
* |n the Student constructor, writing:

— this.name refers to the name field in the current
object.

— name refers to the name field in the parameter
list.

Topic List

* Parameters:

— formal

— actual
* Printing from methods
* + Operator (and overloading)
 Recap demo: better ticket machine
* Variables: naming and scope
* this keyword

e QOperators: Arithmetic, Relational and Logical

e Operators: Compound Assignment
e Commenting your code

Boolean conditions

* A boolean condition is an expression that
evaluates to either true or false e.g.

public void insertMoney(int amount) {
if (amount > 0) |
balance = balance + amount;
b
elze |
System.out.println("Use a positive amount: " +

amount) ;

}

e An if statement evaluates a boolean condition
and its result will determine which portion of the
if statement is executed.

Operators: Arithmetic

Arithmetic Explanation Example(s)
Operator
L. 6+2
+ Addition amountOwed + 10
. 6—2
- Subtraction amountOwed — 10
K 6*2

Multiolicati
ultiplication amountOwed * 10

/ Division 6/2
amountOwed / 10

Operators: Relational

Operator (Use Returns true if

> opl >op2 |oplis greater than op2

>= opl >=op2 |oplis greater than or equal to op2

< opl<op2 |oplislessthan toop2

<= opl <=op2 |oplislessthan or equal to op2

== opl ==o0p2 |opland op2 are equal

|= opl !=0op2 |opland op2 are not equal

Source: http://www.freejavaguide.com/relational_operators.htm

Operators: examples

Better ticket machine

public vold insertMoney(int amount) {

if(amount > 0) |

public wvoid printTicket () {
if (balance >= price) |

System.out.println ("#F4$EE4FFEEEEEEEE")

Sy=stem.out.println("# The BlueJ Line");

System.out.println("# Ticket");

System.cut.println("# " + price + " cents.");

System.out.println ("§fffEEFEEEEHEEEEEE™)

Sy=tem.out.println();

total = total + price

e

L§]
m

114 —

11l

balance = balance - price;

}

else |
System.out.println("¥ou must insert at

{(price - balance) +

II":
H
H-
§]
m

leaszt: " +

" more cents.");

balance = balance + amount; 1
} }
elze |
System.out.println({"Use a positive amount: " +

amount) ;

Operators: Logical

* Logic operators operate on boolean values.
* They produce a new boolean value as a result.
* The ones that we will use are:

&& (and)

|] (or)
| (not)

Operators: Logical

a && b (and)

— This evaluates to true if both a and b are true.
— It is false in all other cases.
a || b (or)

— This evaluates to true if either a or b or both are
true, and false if they are both false.

I (not)

— This evaluates to true of a is false, and false if a is
true.

Operators: Logical - quiz

inta =5;
int b =10;
iIntc=7;

What is the result of each of
these boolean expressions:

(a>Db) && (a<c)
(a<b) || (c<a)
(b <a)&& (c>b)

Topic List

* Parameters:
— formal
— actual
* Printing from methods
* + Operator (and overloading)
 Recap demo: better ticket machine
* Variables: naming and scope
* this keyword
e QOperators: Arithmetic, Relational and Logical

e Operators: Compound Assignment

e Commenting your code

Operators: Compound Assignment

balance += amount;
is shorthand for
balance = balance + amount;

balance -= amount;
is shorthand for
balance = balance - amount;

Topic List

* Parameters:
— formal
— actual
* Printing from methods
* + Operator (and overloading)
 Recap demo: better ticket machine
* Variables: naming and scope
* this keyword
e QOperators: Arithmetic, Relational and Logical
e Operators: Compound Assignment

e Commenting your code

Commenting your code

e Comments are lines of text added to source
code to provide explanations to human
readers e.g.

private int price;

e Comments have no effect on the functionality
of a class.

Commenting your code

/**

* TicketMachine models a naive ticket machine that issues

* flat-fare tickets.

* The price of a ticket 1s specified via the constructor.

* Tt is a naive machine in the sense that it trusts its users
* to insert enough money before trying to print a ticket.

* Tt also assumes that users enter sensible amounts.

* Qauthor David J. Barnes and Michael Kolling
* @version 2006.03.30
*/
public class TicketMachine
{
The price of a ticket from this machine.
private int price;
The amount of money entered by a customer so far.

private int balance;
/ The total amount of money collected by this machine.

private int total;

/**

* Create a machine that issues tickets of the given price.
* Note that the price must be greater than zero, and there
* are no checks to ensure this.

*/

public TicketMachine (int ticketCost)

{

price ticketCost;

A single-line comment
is introduced by the
two characters ‘//,
which are written with
no spaces between
them.

Comments beginning
with ‘//** and ending
with ‘*/” are called
Javadoc comments and
we will discuss these in
a later lecture.

Commenting your code

/**
* Print a ticket.
* Update the total collected and

* reduce the balance to zero.

*/
public void printTicket ()
{
/* Simulate the printing of a ticket.
* There 1s n alidation 1n this method; a tick
* can print be printed even if sufficient funds

System.out.println ("###44#4F44H44FHFEET) ;
System.out.println ("# The BlueJ Line");
System.out.println("# Ticket");
System.out.println("# " + price + " cents.");
System.out.println ("###4##44444444445E")
System.out.println () ;

the balance.

collected with

// Update the total

More detailed
comments, often
spanning several
lines, are usually
written in the form
of multi-line
comments. These
start with the
character pair /*’
and end with the
pair “*/’.

Questions?

Study aid: Can you answer these questions?

 What is the purpose of parameters in Constructors?
 What is meant by passing Objects as parameters?
 What are formal parameters?

* What are actual parameters/arguments?

 What does String concatenation mean?

 What does operator overloading mean? Can you name
two uses of the + operator?

 What is meant by variable scope?
 What is meant by the lifetime of a variable?

 What is the accepted naming convention for Java
Variables?

Study aid: Can you answer these questions?

 How do you print to the console?

 What is the this keyword used for?

 What is the purpose of comments in source code?
* How do you write a single-line comment?

 How do you write a multi-line comment?

* How do you write a Javadoc comment?

Study aid: Can you answer these questions?

* What are
— Arithmetic operators?
— Relational operators?
— Logical operators?
— Compound Assignment operators?

* Can you write a Java code fragments using these
operators?

@ O®

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-MonCommercial 3.0 License.

For more information, please see hitp://
creativecommons.org/licenses/by-nc/3.0/

N
\&/

|
ﬂl -
T ey fai
i

Waterford Institute of Technology Department of Computing and Mathematics
INSTITIUID TEICNEOLAIGCHTA PHORT LAIRGE http://www.wit.ie/

