
Ticket Machine Project(s)

Produced by: Dr. Siobhán Drohan
(based on Chapter 2, Objects First with Java - A Practical
Introduction using BlueJ, © David J. Barnes, Michael Kölling)

Department of Computing and Mathematics
http://www.wit.ie/

Understanding the basic contents of classes

Topic List

• Data types:
– primitive
– objects

• Demo of naïve ticket machine
• Inside classes:

– fields
– constructors
– methods:

• accessors
• mutators

– assignment statements

• Demo of better ticket machine
• Making choices: conditional statements (if)

Data Types

• Java uses two kinds of types:

– Primitive types

– Object types

• A field’s data type determines the values it
may contain, plus the operations that may be
performed on it.

Primitive Data Types

• Java programming language supports eight primitive data
types.

• A primitive type is predefined by the language and is named
by a reserved keyword.

• A primitive type is highlighted red when it is typed into BlueJ
e.g.

Primitive Data Types (for whole numbers)
Type Byte-

size
Minimum value
(inclusive)

Maximum value
(inclusive)

Typical Use

byte 8-bit -128 127 Useful in
applications
where memory
savings apply.

short 16-bit -32,768 32,767

int 32-bit -2,147,483,648 2,147,483,647 Default choice.

long 64-bit -
9,223,372,036,
854,775,808

9,223,372,036
,854,775,807

Used when you
need a data type
with a range of
values larger
than that
provided by int.

Primitive Data Types (for decimal numbers)

Type Byte-
size

Minimum value
(inclusive)

Maximum value
(inclusive)

Typical Use

float 32-bit Beyond the scope of this
lecture .

There is also a loss of
precision in this data-type
that we will cover in later
lectures.

Useful in
applications
where memory
savings apply.

double 64-bit Default choice.

Primitive Data Types (others)

Type Byte-size Minimum value
(inclusive)

Maximum value
(inclusive)

Typical Use

char 16-bit '\u0000'
(or 0)

'\uffff'
(or 65,535).

Represents a
Unicode character.

boolean 1-bit n/a
Holds either true
or false and is
typically used as a
flag.

http://en.wikipedia.org/wiki/List_of_Unicode_characters

http://en.wikipedia.org/wiki/List_of_Unicode_characters

Default values

Data Type Default Value (for fields)

byte 0

short 0

int 0

long 0L

float 0.0f

double 0.0d

char '\u0000'

String (or any object) null

boolean false

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Object Types

• All types that are not primitive are object
types.

Primitive fields

Primitive field
Object Type

Object Types

• Includes classes from standard java library e.g.
String:

private String color;

• Also includes user defined classes e.g. Square,
Circle, etc.

https://docs.oracle.com/javase/8/docs/api/

Topic List

• Data types:
– primitive
– objects

• Demo of naïve ticket machine
• Inside classes:

– fields
– constructors
– methods:

• accessors
• mutators

– assignment statements

• Demo of better ticket machine
• Making choices: conditional statements (if)

Ticket machine – an external view

• Exploring the behavior of a typical ticket
machine (e.g. the naive-ticket-machine):

– Machines supply tickets of a fixed price.

• How is that price determined?

– How is ‘money’ entered into a machine?

– How does a machine keep track of the money that
is entered?

Demo

Exploring the behaviour of the

naïve ticket machine

Ticket machines – an internal view

Interacting
with an object
gives us clues
about its
behavior.

Ticket machines – an internal view

Returns a whole number (int) representing
the balance or price of the ticket. Both
methods have no parameters; they don’t
need any information to do their task.

Allows the user to insert money
(an int value parameter) into the
ticket machine. Doesn’t return
anything (it is void).

Prints the ticket to the console window.
Doesn’t return anything (it is void).

Topic List

• Data types:
– primitive
– objects

• Demo of naïve ticket machine
• Inside classes:

– fields
– constructors
– methods:

• accessors
• mutators

– assignment statements

• Demo of better ticket machine
• Making choices: conditional statements (if)

Ticket machines – an internal view

• Looking inside allows
us to determine how
that behavior is
provided or
implemented.

• All Java classes have a
similar-looking
internal view.

Basic class structure

public class TicketMachine

{

//Inner part of the class omitted.

}

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

The outer wrapper of
TicketMachine

The contents of a class

Instance fields

• Variables store values for an
object.

• These variables are typically
called instance fields /
instance variables.

• Instance fields define the
state of an object i.e. the
values stored in the instance
fields.

public class TicketMachine

{

private int price;

private int balance;

private int total;

//Further details omitted.

}

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

Instance fields

In BlueJ, you can view the
object state by either:

• right clicking on the
object and selecting the
Inspect option OR

• double clicking on the
object.

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

Instance fields

public class TicketMachine

{

private int price;

private int balance;

private int total;

//Further details omitted.

}

private int price;

visibility\access modifier
type

variable name

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

Constructors

• A constructor builds an
object and initialises it to a
starting state.

• They have the same name
as their class.

• Their access modifier is
public.

• They store initial values in
the instance fields; they
often receive external
parameter values for this.

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

Methods

• Methods
implement the
behaviour of
objects.

• Java uses methods
to communicate
with other classes.

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

Method signature

The method signature consists of a method name and
its parameter type list e.g.

getPrice()
insertMoney(int amount)

The method body encloses the method’s statements
i.e. the code block for the method

Method Body

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

Method return types

Methods can return
information about an
object via a return value.

The void just before the
method name means that
nothing is returned from these
methods.
void is a return type and must
be included in the method
signature if your method
returns no information.

The int before the method
names mean that a whole
number is returned from
these methods. A method can
only have one return type.

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

Return types

In BlueJ, when you
call a method that
returns data, a screen
will pop up with the
returned data e.g.

• the getPrice()
method returns the
whole number, 30.

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

Types of Methods

Now that we have
covered method
signature and return
types, we are going
to look at two
specific “types” of
methods i.e.

• Accessor methods

• Mutator methods

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

Accessor methods

• Accessor methods
return information
about the state of an
object.

• Typically they:
– contain a return

statement (as the
last executable
statement in the
method).

– define a return type.

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

Accessor/getter methods

• ‘Getter’ methods are a specific type of
accessor method.

public int getPrice()

{

return price;

}

return type

method name

parameter list
(empty)

start and end of method body (block)

return statement

visibility modifier

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

Mutator methods

• Mutator methods
change (i.e. mutate!)
an object’s state.

• Typically they:
– contain an

assignment
statement

– take in a parameter
to change the object
state.

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

Mutator/setter methods

• ‘Setter’ methods are a specific type of
mutator method.

public void insertMoney(int amount)

{

balance = balance + amount;

}

return type

method name parameter

visibility modifier

assignment statementfield being mutated

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

Getters/setters

• For each instance field in a class, you are
normally asked to write:

– A getter

– A setter

• However, depending on the design of your app,
you may wish to not provide getters/setters for
specific fields (more on this later!)

public class ClassName

{

//Instance Fields

//Constructors

//Methods

}

Assignment Statement

Values are stored in
instance fields (and
other variables) via

assignment
statements.

Assignment Statement

• A variable stores a single value, so any previous value
is lost.

• Assignment statements work by taking the value of
what appears on the right-hand side of the operator
and copying that value into a variable on the left-
hand side.

Syntax variable = expression;

Example price = ticketCost;

Topic List

• Data types:
– primitive
– objects

• Demo of naïve ticket machine
• Inside classes:

– fields
– constructors
– methods:

• accessors
• mutators

– assignment statements

• Demo of better ticket machine
• Making choices: conditional statements (if)

Reflecting on the naïve ticket machine

• The behavior is inadequate in several ways:

– No checks on the amounts entered.

– No refunds.

– No checks for a sensible initialisation.

• How can we do better?

– We need more sophisticated behavior.

demo

Briefly explore the more sophisticated
behaviour of the:

better ticket machine

Note: we will look at this in more detail
a subsequent lecture.

Topic List

• Data types:
– primitive
– objects

• Demo of naïve ticket machine
• Inside classes:

– fields
– constructors
– methods:

• accessors
• mutators

– assignment statements

• Demo of better ticket machine
• Making choices: conditional statements (if)

Adding checks by making choices

Naïve ticket machine

Better ticket machine

Adding checks by making choices

Naïve ticket machine

Better ticket machine

Conditional Statement Syntax (1)

if(perform some test)

{

Do these statements if the test gave a true result

}

‘if’ keyword
boolean condition to be tested

actions if condition is true

Conditional Statement Syntax (2)

if(perform some test) {

Do these statements if the test gave a true result

}

else {

Do these statements if the test gave a false result

}

‘if’ keyword
boolean condition to be tested

actions if condition is true

actions if condition is false
‘else’ keyword

Conditional Statement Syntax (3)

if(condition1…perform some test)

{

Do these statements if condition1 gave a true result

}

else if(condition2…perform some test)

{

Do these statements if condition1 gave a false

result and condition2 gave a true result

}

else

{

Do these statements if both condition1 and

condition2 gave a false result

}

Some notes on the if statement

• An if statement IS a statement; it is only
executed once.

• When your if statement only has one
statement inside it, you do not need to use
the curly braces.

• For example, both of these are the same:
if (balance >= price)

{

System.out.print(“Sufficient funds”);
}

if (balance >= price)

System.out.print(“Sufficient funds”);

if (balance >= price)

{

System.out.print(“Sufficient funds”);
}

Some notes on the if statement

• The semi-colon (;) is a statement terminator.

• One is circled in the code example below:

• Your if statement does not need a statement
terminator.

public TicketMachine(int ticketCost)

{

price = ticketCost;

balance = 0;

total = 0;

}

Improving the constructor

public TicketMachine(int ticketCost)

{

if (ticketcost > 0)

{

price = ticketCost;

}

else

{

price = 20;

}

balance = 0;

total = 0;

}

Note: in the constructor
set the field to a default
value if invalid data was
entered…maybe our
tickets will have a default
cost of 20 if an invalid
ticketCost is entered.

Improving the setter / mutator

public void setBalance(int amount)

{

if (amount > 0) {

balance = amount;

}

}

Note: The validation done at constructor level
must be repeated at setter level for that field.

However, in setter methods do not update the
field’s value if invalid data was entered (notice
how the “else” part of the “if” is not there).

Study aid: can you answer these questions?

• Java has two kinds of types…what are they?

• How many primitive types does Java have? Can you
name them?

• Can you give an example of an object type?

• What are instance fields? What does object state
mean?

• What is the job of a constructor? How do you
recognise one i.e. method signature?

• What is a method signature? What is a method
body?

Study aid: can you answer these questions?

• What are accessor methods and how would you
recognise them in your source code?

• What are mutator methods and how would you
recognise them in your source code?

• What are assignment statements? Can you write a
statement that declares a String variable called
name and updates its contents to Joe Soap?

• What are if statements? How do you write them?

• What are boolean expressions?

Questions?

Department of Computing and Mathematics
http://www.wit.ie/

