
Classes and Objects

Produced by: Dr. Siobhán Drohan
(based on Chapter 1, Objects First with Java - A Practical
Introduction using BlueJ, © David J. Barnes, Michael Kölling)

Department of Computing and Mathematics
http://www.wit.ie/

A recap & going deeper with objects and classes

Topic List

• Recap

– Classes and objects

– Methods

– Parameters

– Data Types

– Multiple Instances

– Object State

– Object Interaction

– Files in Java

– JVM

• New Material:

– Demo: lab-classes

– Constructors with
Parameters

– Visibility / Access modifiers

– Objects as parameters

– Method signature

– Return Types

– Naming conventions for
Java Classes

Java is an object-oriented language

• Modelling some part of the world built up
from objects that appear in the problem
domain.

• These objects must be represented in the
computer model being created e.g.
– Student

– Course

– Teacher

Classes

• Represent all objects of a kind e.g.: “car”
• The class describes the kind of object; the class is a

template/blueprint.

• Objects are created from classes; an object is an instance of a class.
• Represent ‘things’ from the real world, or from some problem

domain e.g. “the red car in the car park”.
• The objects represent individual instantiations of the class.

Objects

Object
bench

Creating an object

• Right click on the class

• From the popup menu, call the
constructor e.g. Triangle()

• The constructor is a special
method that is the same name as
the class.

• You will be asked for the name of
the instance e.g. triangle1.

• The constructor “constructs” the
object i.e. creates an instance of
the class.

Methods

Objects have
operations
which can be
invoked (Java
calls them
methods).

Calling methods (invoking)

• Right click on the object.

• The popup menu lists all
the methods that can be
invoked on the object.

• Objects usually do
something if we invoke a
method.

• We can communicate
with objects by invoking
methods on them.

Parameters

These methods have
NO parameters

These methods
HAVE parameters

Methods with NO parameters

• If the method needs additional information to do its
tasks, parameters are typically passed into the
method.

• These methods have no parameters as the method
doesn’t need additional information; note how no
variable is passed in the parenthesis i.e. ().

Methods with Parameters

• If a method needs additional information to execute,
we provide a parameter so that the information can
be passed into it.

• The methods above have one parameter.
• A method can have any number of parameters.
• A parameter is a variable – it has a type (int) and a

name (distance).

Methods with Parameters

• In BlueJ, if we invoke the
moveVerticalmethod, a
dialog will pop up asking you
to enter a value for distance.

• As the distance variable is
declared as an int, we enter
a whole number.

Variables

• Variables are used to store information.

• In Java, each variable must be given:

– A variable name e.g. distance

– A data type e.g. int

• We will cover variable name conventions later.

Data types

• When we define a variable, we have to give it
a type.

• So far, we have seen three different data types
for our variables:
– int

– boolean

– String

• The type defines the kinds of values (data)
that can be stored in the variable.

Data types

• int

This type holds whole numbers

• boolean

This type holds EITHER true or false.

• String

This type holds a number of characters.
Strings are enclosed within “ ”.

There are more data types in Java and we will cover these in
due course.

Multiple Instances

• You can create as
many instances
(objects) of a class as
required.

• In this screen shot,
there are three
objects (instances) of
the Triangle class.

Object State

• Each of the Triangle
objects on the
previous slide has its
own state.

• We can see they are
all different colours
and have a different
position on the
canvas.

Object State

• In BlueJ, double clicking on
the object displays the
object state.

Object State

• An object has attributes: values
stored in fields.

• The class defines what fields
(variables) an object has, but
each object stores its own set of
values (the state of the object).

Object Interaction

• In the Picture class, the draw() method creates:
– Two Square objects

– One Triangle object

– One Circle object

• Methods are invoked over these objects to alter
their position, change their colour and their size.

• Objects communicate by calling each other’s
methods.

Topic List

• Recap

– Classes and objects

– Methods

– Parameters

– Data Types

– Multiple Instances

– Object State

– Object Interaction

– Files in Java

– JVM

• New Material:

– Demo: lab-classes

– Constructors with
Parameters

– Visibility / Access modifiers

– Objects as parameters

– Method signature

– Return Types

– Naming conventions for
Java Classes

Demo

lab-classes project

(source code and file structure)

Constructors with parameters

Recap:
• A constructor is a

special method that
is the same name as
the class.

• It “constructs” the
object i.e. creates an
instance of the class.

Constructors with parameters

When a constructor with
parameters is called, a
window will pop up
asking you to enter the
required information:

Constructors with parameters

The entered information is then used to set up the
starting state of the object:

Constructors with parameters

A constructor typically sets a starting state for an object.

Student.java

Visibility / Access modifiers

Access level modifiers determine whether other classes
can use a particular field or invoke a particular method.

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Visibility / Access modifiers

source

http://2.bp.blogspot.com/-LTO8bwD3c6o/Tw1GoeAlHeI/AAAAAAAABlE/0EX24ENt9uY/s1600/access+specifiers.png

Objects as parameters

• Objects can be
passed as
parameters to
methods of
other objects.

Objects as parameters

Method signature

The method signature consists of a method name and
its parameter type list e.g.

getName()
changeName (String)

The method body encloses the method’s statements
i.e. the code block for the method

Method Body

Method signature

The method signature consists of a method name and
its parameter type list e.g.

getName()
changeName (String)

The method body encloses the method’s statements.

Method Body

Return types

• Methods can return
information about
an object via a
return value.

The void just before the
method name means that
nothing is returned from
this method.

The int and String before
the method names mean
that something is returned
from the method.

Return types (void)

• The return type of these methods is void.

• These methods do not return any information.

• void is a return type and must be included in the
method signature if your method returns no
information.

Return types (when data is returned)

• Each of the above methods returns data.

– The getCredits() method returns data whose type is int.

– The getName() method returns data whose type is String.

• You can only have one return type per method.

Return types (when data is returned)

• In BlueJ, when you call a method that returns data, a
screen will pop up with the returned data e.g. the
getName() method returns:

Naming conventions for Java classes

• All classes should start with a capital letter.

• Classes should be meaningfully named.

• Classes should be singular not plural.

Questions?

Study aid: Can you answer these questions?

• What is the purpose of parameters in Constructors?

• What are visibility/access modifiers?

• What is meant by passing Objects as parameters?

• What is a method signature?

• What are method return types?

• What is the accepted naming convention for Java
Classes?

Department of Computing and Mathematics
http://www.wit.ie/

