Introduction to the Module

Structure, Assessment and Ethos

Produced by: Dr. Siobhán Drohan

Module Structure

10 credits.

8 contact hours in FTG24.

- Typically follow this structure:
 - 2 hours of lectures, 6 hours of labs, but this can vary depending on the topic.

Lectures

Introduce theory.

 Slide decks and/or programming demonstrations.

 All material presented will be available online prior the lecture taking place.

Labs

- Exercises based on the theory presented in lectures.
- Sometimes we will use labs to introduce new concepts and follow up with a lecture.
- All lab work will be available online and will typically come with solutions.
- Labs developed by John Fitzgerald but delivered by Dr. Siobhán Drohan.

Lab advice

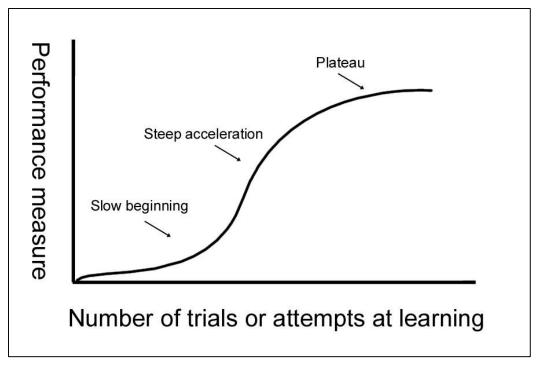
- Not a race to be the first student finished!
 - take your time.
 - read the instructions carefully.
 - ask your lecturer to explain concepts that you don't understand; that is what we are here for!
- Complete all labs!
- You are free to work on your own or you can choose to use a Pair programming approach: https://www.youtube.com/watch?time_continue=8&v=rG_U12uqRhE.

Assessment

• 100% CA (i.e. no final written exam).

- 3 assignments:
 - Week 5
 - Week 9
 - Week 12

Week	Date	Event
1	16 th Jan	
2	23 rd Jan	
3	30 th Jan	
4	6 th Feb	
5	13 th Feb	Assignment 1
	MIDTERM	MIDTERM
6	27 th Feb	
7	6 th Mar	
8	13 th Mar	
9	20 th Mar	Assignment 2
10	27 th Mar	
11	3 rd April	
	EASTER	EASTER
	EASTER	EASTER
12	24 th April	Assignment 3


Ethos of the Module

- Student engagement:
 - Ask questions, and lots of them!
- Practice makes perfect:
 - practice, practice, practice.
- Work submitted must be your own work:
 - Compulsory interviews will be conducted on all submitted work to verify:
 - Authorship
 - Understanding

Learning Curve

When learning a new topic, there is a learning curve...

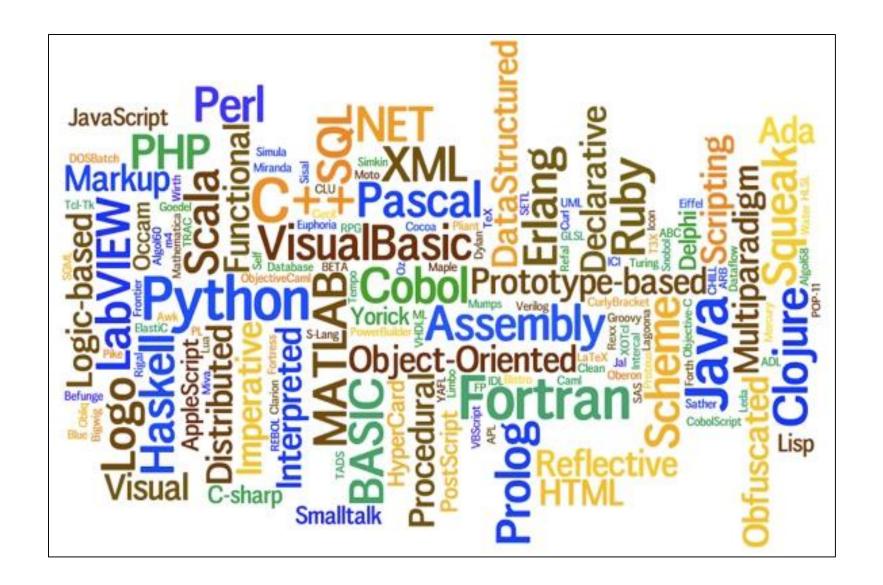
- This is natural
- Stick with it
- Ask for help

Module Contents

Introduction to object-oriented programming...

...with a strong software engineering foundation

...aimed at producing and maintaining large, high-quality software systems.



Programming Languages

Programming Languages

Every operation your computer performs has an instruction that someone wrote using a programming language.

```
import java.util.Random:
import java.util.Scanner;
public class GuessingGame {
    public static void main(String[] args) {
        Random rand = new Random();
        int numberToGuess = rand.nextInt(1000);
        int numberOfTries = 0;
        Scanner input = new Scanner (System. in);
        int guess;
        System.out.println("Guess a number between 1 and 1000: ");
        guess = input.nextInt();
        if (guess == numberToGuess) {
        else if (guess < numberToGuess) {
            System.out.println("Your guess is too low");
        else if (guess > numberToGuess) {
            System.out.println("Your guess is too high");
```

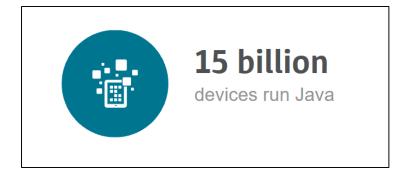

There are MANY programming languages:

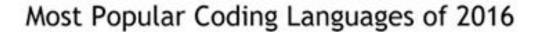
https://en.wikipedia.org/wiki/List of programming languages

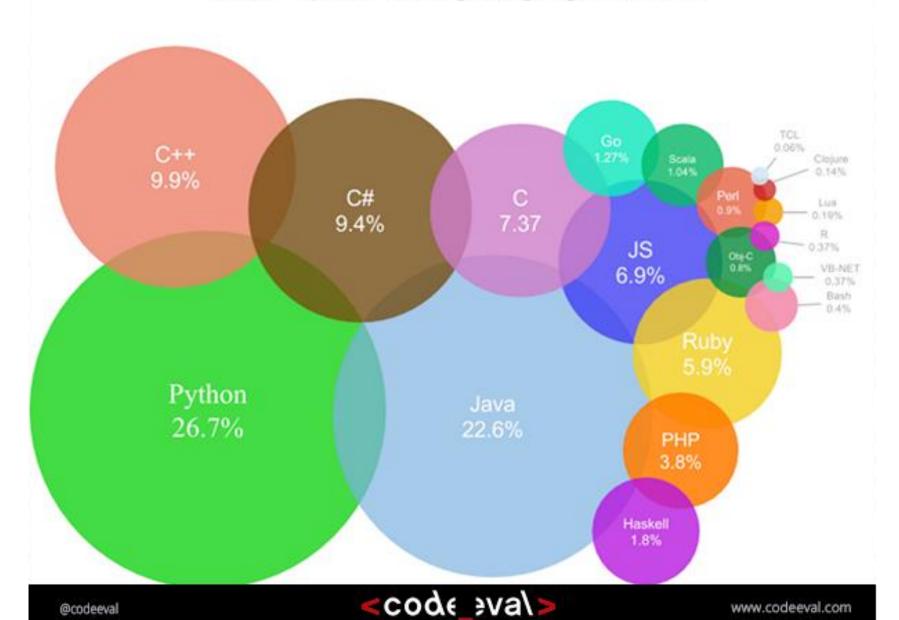
Programming Language - Java

5 million students study java

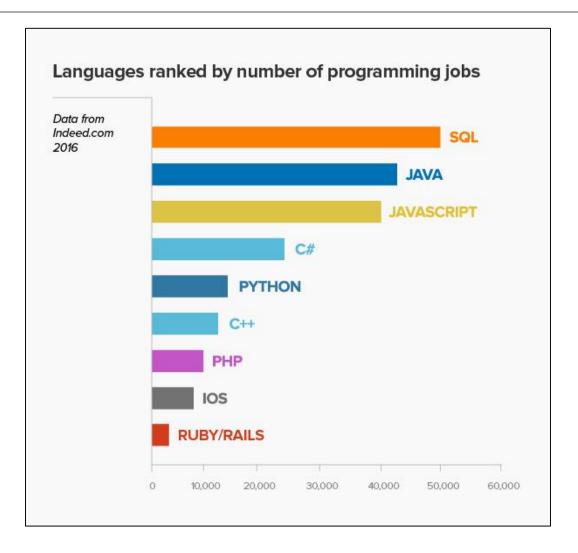
10 millionJava developers worldwide


15 billion devices run Java

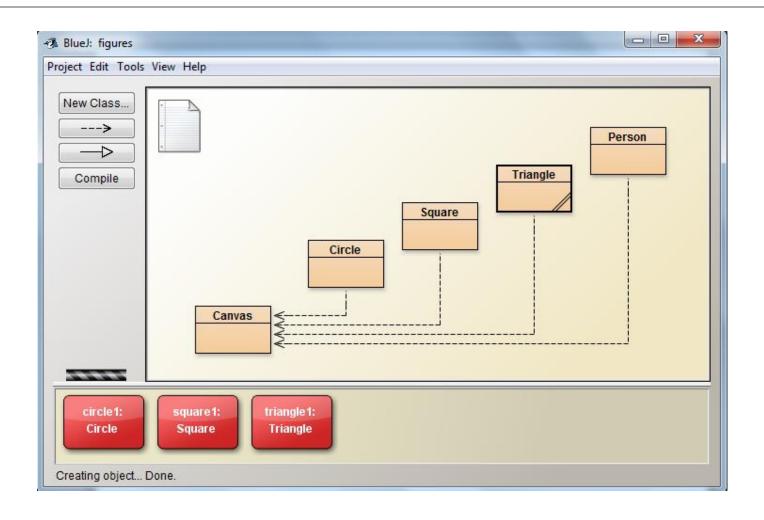



#1 platform for development in the cloud

Programming Language - Java


- Mobile Phones
- Web Apps
- Desktop Apps
- Printers
- Medical Equipment
- Navigation Controls for NASA's Mars Rover
- Washing Machines
- Cars
- Jet Engines
- etc.

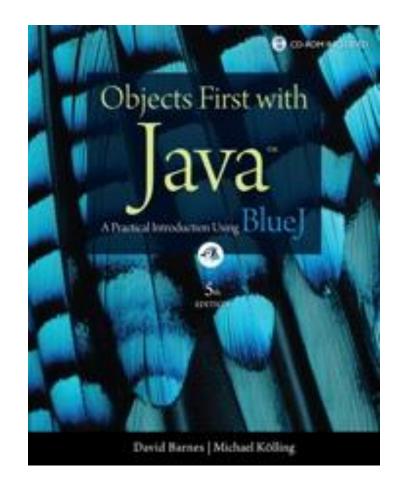
Programming Language - Java


IDE

IDE

- IDE = Integrated Development Environment
- Software used by programmers to develop applications.
- BlueJ, an IDE specifically designed for education, will help us write Java apps by providing:
 - Source code editor
 - Compiler
 - Debugger
 - Unit testing support
 - Etc.

IDE - BlueJ



Book

David J. Barnes & Michael Kölling

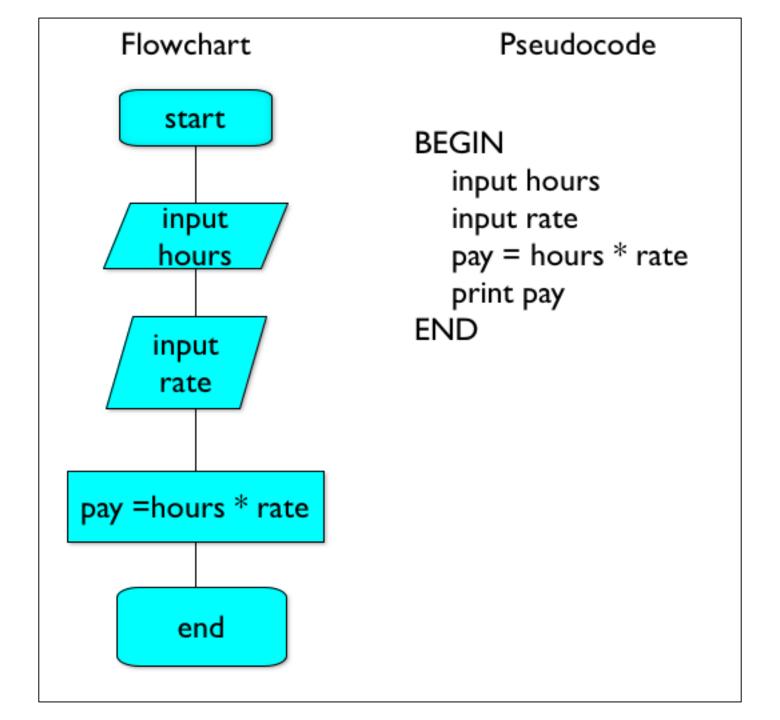
Objects First with Java: A Practical Introduction using BlueJ

Fifth Edition
Prentice Hall / Pearson Education
2012
ISBN: 978-013-249266-9

Course overview

- Objects and Classes
- Encapsulation
- Abstraction and Modularization
- Grouping objects
- Testing and Debugging
- Searching and Sorting
- Interfaces
- Inheritance and Polymorphism

Some Buzzwords


cohesion polymorphism javadoc inheritance overriding classes encapsulation collections coupling objects iterators mutators interface

Learning Outcomes

- 1. Apply core problem solving approaches suitable to the programming discipline to build algorithms.
- 2. Write small applications using standard sequence, conditional and iterative control structures.
- 3. Modify and expand small applications.
- 4. Write small applications that use simple UI, computation and data structures.
- 5. Develop techniques to effectively test, debug and document small applications.
- 6. Analyse and explain how the above applications work.
- 7. Apply problem-solving strategies to various computing problems of increasing complexity.
- 8. Design, develop, test and document applications using advanced programming constructs and data structures.
- 9. Develop applications consistent with UX best practice.
- 10. Develop persistent applications.
- 11. Consider maintainability and robustness when designing applications.

Some required terminology before we start coding

Pseudocode and Algorithms

Pseudocode

For example, for making a cup of tea:

```
Organise everything together;
Plug in kettle;
Put teabag in cup;
Put water into kettle;
Wait for kettle to boil;
Add water to cup;
Remove teabag with spoon/fork;
Add milk and/or sugar;
Serve;
```

Pseudocode

- Pseudocode is a form of structured English.
- It has features that resemble real programming language code.
- But it retains sufficient natural language to allow solutions to be expressed without needing to understand the precise details of a programming language.

Algorithm

Pseudocode helps programmers develop algorithms.

 Algorithms are a finite set of steps, executed in a particular order, for solving a particular problem / computing a result / etc.

Pseudocode

· For example, for making a cup of tea:

```
Organise everything together;
Plug in kettle;
Put teabag in cup;
Put water into kettle;
Wait for kettle to boil;
Add water to cup;
Remove teabag with spoon/fork;
Add milk and/or sugar;
Serve;
```

The Algorithm for making a cup of tea, expressed in Pseudocode.

Algorithm examples

How Does Facebook Choose What To Show In News Feed?

nterest

Interest of the user in the creator

This post's performance amongst other users

Creator Type

Performance of past posts by the content creator amongst other users

Type of post (status, photo, link) user prefers

Recency

How new is the post

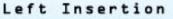
* This is a simplified equation. Facebook also looks at roughly 100,000 other high-personalized factors when determining what's shown.

ALGORITHMS

FIRST LAYER SECOND LAYER THIRD LAYER

Cross can be solved intuitively.

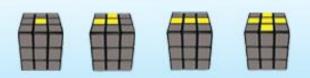
L Special case is when the piece is flipped use the following Algorithm.


30 F8 0 L8 08

Orientation of the corner Pieces.

Algorithm Used: 20 RS DS R D

Algorithm Used 8 ≥> Ui Li U L U F Ui Fi


Right Insertion

Algorithm Useds 9> U R Oi Ri Oi Fi U F

This is what the cube will look like..

Algorithm Useds 5> F R U Ri Ui Fi Your goal is to get the cross done. Hold the cube as shown in fig. The Sequence is Dot->L->Line->Cross

After the cross you need to align the Edge pieces.
Case 1: Opposite alignment
Case 2: Adjacent alignment
Algorithm used:

SD R O RA O R O O RA Oo

Now without rotating the top layer, find a corner piece which is in right postition (the orientation doesn't matter) Then apply

70 0 8 08 68 0 88 08 60

Apply this till all the corner pieces are placed correctly. Then apply 88 08 8 0 to orient them.

Graphics by: Swarnim Sinha via www.rubiks.com

Questions?

Study aid: Can you answer these questions?

- What is a programming language?
- What is an IDE?
- What is pseudocode?
- What is an algorithm?
- How are pseudocode and algorithms related?

Except where otherwise noted, this content is licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http:// creativecommons.org/licenses/by-nc/3.0/