TCP/IP Transport Layer Protocols, TCP and UDP

Learning Objectives

¢ Identify TCP header fields and operation using a Wireshark FTP session capture.
¢ Identify UDP header fields and operation using a Wireshark TFTP session capture.

Background

The two protocols in the TCP/IP Transport Layer are the transmission control protocol (TCP),
defined in RFC 761, January, 1980, and user datagram protocol (UDP), defined in RFC 768,
August, 1980. Both protocols support upper-layer protocol communication. For example, TCP is
used to provide Transport Layer support for the HTTP and FTP protocols, among others. UDP
provides Transport Layer support for domain name services (DNS) and trivial file transfer protocol
(TFTP), among others.

The ability to understand the parts of the TCP and UDP headers and operation are a critical skill
for network engineers.

Scenario
Using Wireshark capture, analyze TCP and UDP protocol header fields for file transfers between
the your host computer and FTP and TFTP servers.
Windows command line utilities ftp and tftp will be used to connect to the servers. If you do
not have a tftp client enabled by default on your Windows OS you can enable it under Control
Panel — Add Programs — Add Windows Components.
You can download a tftp server from http://www.jounin.net/tftpd32 _download.html or use any
similar simple tftp server.

Task 1: Identify TCP Header Fields and Operation using a Wireshark FTP Session
Capture.

Step 1: Capture a FTP session.
TCP sessions are well controlled and managed by information exchanged in the TCP header fields. In
this task, a FTP session will be made to any FTP server (e.g. ftp.heanet.ie). When finished, the session
capture will be analyzed. Windows computers use the FTP client, £tp, to connect to the FTP server
Open a command line window by clicking on Start | Run, type cmd, then press OK.
Start a Wireshark capture on the host interface.
Start an FTP connection to the ftp server. Type the command:

> ftp ftp.heanet.ie
When prompted for a user id, type anonymous. When prompted for a password, press <ENTER>.
Change the FTP directory to /pub/

ftp> ecd pub

ftp> cd putty

Terminate the FTP sessions in each command line window with the FTP quit command:
ftp> quit

http://www.jounin.net/tftpd32_download.html

Close the command line window with the command exit:

> exit

Stop the Wireshark capture.

Step 2: Analyze the TCP fields.

W Twe - Source

Dastratee

172.16.1.1

). 000610

132, 108, 254. 1 Ackel WiNeGS260 LermD

30 54) Seqe

4 0,008818 192,188,253,252 172,10.1.1 e Resporse: 220 welcome to the eagle-server FTP service.
3 0.115430 172.10.1.1 192,108, 254.254 TCP 1032 = frp [ACK] Seqel Acke27 Wire04154 LeneO

€ B8.223%41 152,16.1,1 192,108, 258,254 FTP Request: USER arorywous

7 8.224089 192,16¢8,254,234 172,16.1.1 TCP fIp » 1052 [ACK] Seged7 Acke17 wine35820 LenwO

5 8.224120 192,188,254,234 172.16.1.1 FTF Resporse: 331 Please specify the password,

9 8,327214 172,16.1.1 192,106, 234,254 TCF 1032 > fip [ACK] Seqel” AckeSL wine02100 Len=0
10 9, 317023 172.16.1.1 192,106,254, 254 T Request: PASS
11 9,31913% 192,168,2%3,234 172,16.1.1 FTP Resporse: 230 togir succeasful,
12 9,0625097 172.10.1,1 192,108,254, 254 TP 1052 > frp [ACK] Segeld ack«104 Win=G64137 Lenw0

13 32.305732 172.10.1.1 192.108,254.258 FTR Request: CnD /pub/eagle_Yabs/eaglel/chaprers

14 32.366373 152,108,234,232 172,10.1.1 FTF Resporae: 230 Directory success'u\\y changed,

15 32,370633 172.10.1.1 192,106.254.254 FTR Request: PORT 172,16,1,1,4
16 32.377165 192,148,254,2%4 172.16. 1 1 FTE Resporse: 200 PORT :o-um su«ess!u'. Corstder usting PASY.
17 2 25 FTP aeuuest: RETR s1-cemtral

. 361720

172,16. 1.1

382777 132,188,254,

54 172.19.1.1 TCP p~¢au > mr ACK Seo-l A:k-l mn-’“ﬂ Lan=l TSymd? 55196 YSER-O
1 32.35289] 192.1%8,234,232 172.10.1.1 FTF Resporse; 130 Openting BINSAY mode data coonection for sl-central {3100 bytves).
22 32,383528 152,108,733, 172,10.1.1 FTP-DATA FTP Data: 1243 by'(
23 32,383569 192.148,232,234 172,16.1.1 FTP-DATA FTP Data: 1448
24 32,383631 172.19,1,1 192,168, 258,254 P 1057 » fip-data ACK) Segel Acke2837 winm0i280 Lened TSVe30838 TSER=47534960
23 32,383736 192,168,233,2%2 172.16.1.1 FTF-DATA FTP Data: 2048
20 32.383733 232 . FIF Resporse: 2248 Fﬂe send OK.

192,168,234,
172,18,1,1
192,168,252,

1138952
1439332

2

192,188,232,

101‘ > ﬁp [ack3 SQQ-!OO A(kxll I‘Mlm L!M

tp-cata > 1057
Request: QUIT
Resporse: 221 Goochye.,

tp * 10392 [ACK] S2qe256¢ Ack«=107 winre3840 Lenw0

Flgure 2. FTP capture.

Switch to the Wireshark capture windows. The top window contains summary information for each
captured record. Student capture should be similar to the capture shown in Figure 2. Before delving into
TCP packet details, an explanation of the summary information is needed. When the FTP client is
connected to the FTP server, the Transport Layer protocol TCP created a reliable session. TCP is
routinely used during a session to control datagram delivery, verify datagram arrival, and manage window
size. For each exchange of data between the FTP client and FTP server, a new TCP session is started.
At the conclusion of the data transfer, the TCP session is closed. Finally, when the FTP session is
finished TCP performs an orderly shutdown and termination.

Flags: 0x02

= Options:

(8

= Transmission Control Protocol,
Source port:
Destination port: ftp (21)
sequence number: 0
Header Tlength: 28 bytes

window size:
Checksum: 0xb965 [correct]

Maximum segment size:
NOP
NOP
SACK permitted

Figure 3. Wireshark capture of a TCP datagram.

Src Port: 1052 (1052), Dst Port: ftp (21), Seqg: 0, Len: O
1052 (1052)

(relative sequence number)

(5YN)

Ccongestion window Reduced (CwR):
ECN-Echo: Not set

urgent: Not set
Acknow] edgment :
Push: Not set
Reset: Not set
Syn: Set

Fin: Not set
64240

NOT s5etT

Not set

bytes)

1460 hytes

In Wireshark, detailed TCP information is available in the middle window. Highlight the first TCP datagram
from the host computer, and move the mouse pointer to the middle window. It may be necessary to adjust
the middle window and expand the TCP record by clicking on the protocol expand box. The expanded
TCP datagram should look similar to Figure 3. To view your FTP session you can highlight any one of the
FTP packets and goto Analyze-Follow TCP Stream. What do you notice about the password you typed

in?

How is the first datagram in a TCP session identified?

TCP SEGMENT

0 4 10 16 24 31
TCP SOURCE PORT NUMBER TCP DESTINATION PORT NUMBER
SEQUENCE MUMBER
ACKNOWLEDGEMENT NUMBER
HLEW | RESERVED | CODE BITS WYINDOWY
TCP CHECKSUM URGENT POINTER
OPTIONS (IF ANY) PADDING
DATA
DATA
CODE BITS: | U|A|R|P|s|F
== EIR
G|K[T|H N[N

Figure 4. TCP packet fields.

Refer to Figure 4, a TCP datagram diagram. An explanation of each field is provided to refresh the
student’s memory:

TCP Source port number belongs to the TCP session host that opened a connection. The value
is normally a random value above 1023.
Destination port number is used to identify the upper layer protocol or application on the remote
site. The values in the range 0-1023 represent the so called “well known ports” and are
associated with popular services and applications (as described in RFC 1700, such as telnet, File
Transfer Protocol (FTP), HyperText Transfer Protocol (HTTP), etc). The quadruple field
combination (Source IP Address, Source Port, Destination IP Address, Destination Port) uniquely
identifies the session to both sender and receiver.
Sequence number specifies the number of the last octet in a segment.
Acknowledgment number specifies the next octet expected by the receiver.
Code Bits have a special meaning in session management and in the treatment of segments.
Among interesting values are:

* ACK (Acknowledgement of a segment receipt),

* SYN (Synchronize, only set when a new TCP session is negotiated during the TCP three-

way handshake).

* FIN (Finish, request to close the TCP session).
Window size is the value of the sliding window - how many octets can be sent before waiting for
an acknowledgement.
Urgent pointer is only used with an URG (Urgent) flag - when the sender needs to send urgent
data to the receiver.
Options: The only option currently defined is the maximum TCP segment size (optional value).

Using the Wireshark capture of the first TCP session start-up (SYN bit set to 1), fill in information about
the TCP header:

From host computer to FTP Server (only the SYN bit is set to 1):

Source IP Address: .
Destination IP Address:
Source port number:
Destination port number:
Sequence number:
Acknowledgement number:
Header length:

Window size:

From FTP Server to host computer (only SYN and ACK bits are set to 1):

Source IP Address:

Destination IP Address: .
Source port number:

Destination port number:
Sequence number:
Acknowledgement number:
Header length:

Window size:

From host computer to FTP server (only ACK bit is set to 1):

Source IP Address: .
Destination IP Address:
Source port number:
Destination port number:
Sequence number:
Acknowledgement number:
Header length:

Window size:

Ignoring the TCP session started when a data transfer occurred, how many other TCP datagrams
contained a SYN bit?

Attackers take advantage of the three-way handshake by initiating a “half-open” connection. In this
sequence, the opening TCP session sends a TCP datagram with the SYN bit set and the receiver sends
a related TCP datagram with the SYN ACK bits set. A final ACK bit is never sent to finish the TCP
handshake. Instead, a new TCP connection is started in half-open fashion. With sufficient TCP sessions
in the half-open state, the receiving computer may exhaust resources and crash. A crash could involve a
loss of networking services, or corrupt the operating system. In either case the attacker has won,
networking service has been stopped on the receiver. This is one example of a denial-of-service (DoS)
attack.

FTF Client FTP Server
FTP Waicoms

£ ackiowt e Erment
FTF uzerd sen

TGP acknowiadgemant)
TP password rasporss

Figure 5. TCP session management.

The FTP client and server communicate between each other, unaware and uncaring that TCP has control
and management over the session. When the FTP server sends a Response: 220 to the FTP client, the
TCP session on the FTP client sends an acknowledgment to the TCP session on FTP server. This
sequence is shown in Figure 5, and is visible in the Wireshark capture.

FTF Client FTP Server
FTP Cliarg. =

_*—-—____q_uii"_.
FTP sarver- "goodoye”
TGP acknowiadgement

4GP session AGK PSS

TCP ackno
Wennerms
TGP rit

FOBEI0N 40K FIN sont
TCP acknowiad emant

TCP sesgion ends
Figure 6. Orderly TCP session termination.

When the FTP session has finished, the FTP client sends a command to “quit”. The FTP server
acknowledges the FTP termination with a Response :221 Goodbye. At this time the FTP server TCP
session sends a TCP datagram to the FTP client, announcing the termination of the TCP session. The
FTP client TCP session acknowledges receipt of the termination datagram, then sends its own TCP
session termination. When the originator of the TCP termination, FTP server, receives a duplicate
termination, an ACK datagram is sent to acknowledge the termination and the TCP session is closed.
This sequence is shown in Figure 6, and visible in the Wireshark capture.

Without an orderly termination, such as when the connection is broken, the TCP sessions will wait a
certain period of time until closing. The default timeout value varies, but is normally 5 minutes.

Task 2: Identify UDP header fields and operation using a Wireshark TFTP session
capture.

Step 1: Capture a TFTP session.

Following the procedure in Task 1 above, open a command line window. The TFTP command has a
different syntax than FTP. For example, there is no authentication. Also, there are only two commands,
get, to retrieve a file, and put, to send a file.

>tftp -help
Transfers files to and from a remote computer running the TFTP service.
TFTP [-i] host [GET | PUT] source [destination]

-1 Specifies binary image transfer mode (also called
octet). In binary image mode the file is moved
literally, byte by byte. Use this mode when
transferring binary files.

host Specifies the local or remote host.

GET Transfers the file destination on the remote host to
the file source on the local host.

PUT Transfers the file source on the local host to

the file destination on the remote host.
source Specifies the file to transfer.
destination Specifies where to transfer the file.
Table 1. TFTP syntax for a Windows TFTP client.

Table 1 contains Windows TFTP client syntax. Start the TFTP server on your machine to allow a class
mate connect to your tftp server.

Start a Wireshark capture, then download a file from your classmates tftp server The command and
syntax to perform this is shown below:

>tftp 10.10.100.41 get testfile

Step 2: Analyze the UDP fields.

M. . Trre Sourte Destrason Protocel nfo
« DO e I’ £ ¢ TFTP READ ReguesT, Frie: Sl-centrdl, Transres Type: o

2. 0,003171 lﬂ‘l“ ?Sl 4 172,16.3.32 TETP Data Packet, slock:

3 0.003314 16.1.1 192,168, 253,353 TEW acknowl nt, Block: 1

4. 0,003962 n:.:u 234234 172.16.1.1 TFTP Data Packet, Block: 2

$ 0.003021 172,16.1.1 192.108,253.253 TFIPF Acknow nt, llo:k 2

6 0,004615 192,168,254, 2%¢ 16.1.1 TFTF Data Packet, Block:
7.0,004673 172,16.1.1 192,168, 252,254 TETP Acknowledgenent, lloclr 3

8 0,005273 192,166,254, 254 172,16.1.1 TFTP Data Facker, plock: 4

9 0,005332 172,16,1.1 192,168,254,254 TETP Acknow] edgenent, uoclt'
10 0. 003920 197.166.254,.254 172.16.1.1 TETP Data Packer, llock
11 0. 003589 172.16.1.1 192,168.253.253 TEYP Acknow | edgesant, Ilock 3
12 0. 000585 192.168.25%4.2% 172.16.1.1 TFT# Data Packet, Block: 0
13 0. 000044 1721611 192,108, 258,252 TFTP Acknow Bloc
14 0,007078 192,168.254.2% 172,16.1.1 TFTP Data Facket, l‘lﬂ‘.k 7 (1!5!)
15 0. 007131 172.16.1.1 192,168,254, 254 TFTP Acknowledgesent, Block:

Figure 7. Summary capture of a UDP session.

Switch to the Wireshark capture windows. Student capture should be similar to the capture shown
in Figure 7. A TFTP transfer will be used to analyze Transport Layer UDP operation.

Frame 1 (64 bytes on wire, 64 bytes captured)
¥ Etherpet II, Src: Xircom_7b:01:5f (00:10:a4:7b:01:5f), Dst: Cisco_cf:66:40 (00:0c:85:cf:66:40)
= Internet Protocol, Src: 172.16.1.1 (172.16.1.1), Dst: 192.168.254.254 (192.168.254.254)
version: 4
Header length: 20 bytes
s Differentiated services Field: 0x00 (DSCP Ox00: pefault; ECN: 0x00)
Total Length: 50
Identificarion: 0x0128 (296)
Flags: 0x00
Fragment offset: 0
Time to live: 128
Protocol: uoP (0x11)
Header checksum: Oxccda [correct]
Source: 172.16.1.1 (172.16.1.1)
pDestination: 192.168.254.254 (192.168.254.254)
= User Datagram Protocol, Src Port: 1038 (1038), Dst Port: tftp (69)

.

UDP Source port: 1038 (1038)
Header pestination port: tftp (69)
Length: 30

Checksum: Ox1f04 [correct]
Uorp & Trivial File Transfer Protoco
Data opcode: Read Reqguest (1)
source File: sl-central
Type: netascii

Figure 8. Wireshark capture of a UDP datagram.

In Wireshark, detailed UDP information is available in the middle window. Highlight the first UDP
datagram from the host computer, and move the mouse pointer to the middle window. It may be
necessary to adjust the middle window and expand the UDP record by clicking on the protocol
expand box. The expanded UDP datagram should look similar to Figure 8.

LDP SEGMENMT

0 16 31
UDP S0OURCE PORT LDP DESTINATION PORT
LUDP MESSAGE LENGTH UDP CHE CKEUM
DATA,
DATA. ...

Figure 9. UDP format.

Refer to Figure 9, a UDP datagram diagram. Header information is sparse, compared to the TCP
datagram. There are similarities, however. Each UDP datagram is identified by the UDP source
port and UDP destination port.

Using the Wireshark capture of the first UDP datagram, fill in information about the UDP header.
The checksum value is a hexadecimal (base 16) value, denoted by the preceding 0x code:

Source IP Address: __.

Destination IP Address:

Source port number:

Destination port number:

UDP message length:

UDP checksum:

How does UDP verify datagram integrity?

Examine the first packet returned from the TFTP server. Fill in information about the UDP header:

Source IP Address:

Destination IP Address: .
Source port number:

Destination port number:

UDP message length:

UDP checksum: 0x

Notice that the return UDP datagram has a different UDP source port, but this source port is used
for the remainder of the TFTP transfer. Since there is no reliable connection, only the original
source port used to begin the TFTP session is used to maintain the TFTP transfer.

Task 5: Reflection.

This lab provided students with the opportunity to analyze TCP and UDP protocol operations from
captured FTP and TFTP sessions. TCP manages communication much differently from UDP, but
reliability and guaranteed delivery requires additional control over the communication channel.
UDP has less overhead and control, and the upper-layer protocol must provide some type of
acknowledgement control. Both protocols, however, transport data between clients and servers
using Application Layer protocols and are appropriate for the upper-layer protocol each supports.
Explore the use of the netstat command to determine what port numbers are in use.

Since neither FTP nor TFTP are secure protocols, all data transferred is sent in clear text. This
includes any user ids, passwords, or clear text file contents. Analyzing the upper-layer FTP
session will quickly identify the user id, password, and configuration file passwords. Upper-layer
TFTP data examination is a bit more complicated, but the data field can be examined and
configuration user id and password information extracted.

