
TCP/IP Transport Layer Protocols, TCP and UDP

Learning Objectives

 Identify TCP header fields and operation using a Wireshark FTP session capture.

 Identify UDP header fields and operation using a Wireshark TFTP session capture.

Background

The two protocols in the TCP/IP Transport Layer are the transmission control protocol (TCP),
defined in RFC 761, January, 1980, and user datagram protocol (UDP), defined in RFC 768,
August, 1980. Both protocols support upper-layer protocol communication. For example, TCP is
used to provide Transport Layer support for the HTTP and FTP protocols, among others. UDP
provides Transport Layer support for domain name services (DNS) and trivial file transfer protocol
(TFTP), among others.

The ability to understand the parts of the TCP and UDP headers and operation are a critical skill
for network engineers.

Scenario
Using Wireshark capture, analyze TCP and UDP protocol header fields for file transfers between
the your host computer and FTP and TFTP servers.

 Windows command line utilities ftp and tftp will be used to connect to the servers. If you do

 not have a tftp client enabled by default on your Windows OS you can enable it under Control
 Panel – Add Programs – Add Windows Components.
 You can download a tftp server from http://www.jounin.net/tftpd32_download.html or use any
 similar simple tftp server.

Task 1: Identify TCP Header Fields and Operation using a Wireshark FTP Session
Capture.

Step 1: Capture a FTP session.

TCP sessions are well controlled and managed by information exchanged in the TCP header fields. In
this task, a FTP session will be made to any FTP server (e.g. ftp.heanet.ie). When finished, the session
capture will be analyzed. Windows computers use the FTP client, ftp, to connect to the FTP server

Open a command line window by clicking on Start | Run, type cmd, then press OK.

Start a Wireshark capture on the host interface.

Start an FTP connection to the ftp server. Type the command:

> ftp ftp.heanet.ie

When prompted for a user id, type anonymous. When prompted for a password, press <ENTER>.

Change the FTP directory to /pub/
ftp> cd pub

ftp> cd putty

Terminate the FTP sessions in each command line window with the FTP quit command:
ftp> quit

http://www.jounin.net/tftpd32_download.html

Close the command line window with the command exit:

> exit

Stop the Wireshark capture.

Step 2: Analyze the TCP fields.

Figure 2. FTP capture.

Switch to the Wireshark capture windows. The top window contains summary information for each
captured record. Student capture should be similar to the capture shown in Figure 2. Before delving into
TCP packet details, an explanation of the summary information is needed. When the FTP client is
connected to the FTP server, the Transport Layer protocol TCP created a reliable session. TCP is
routinely used during a session to control datagram delivery, verify datagram arrival, and manage window
size. For each exchange of data between the FTP client and FTP server, a new TCP session is started.
At the conclusion of the data transfer, the TCP session is closed. Finally, when the FTP session is
finished TCP performs an orderly shutdown and termination.

Figure 3. Wireshark capture of a TCP datagram.

In Wireshark, detailed TCP information is available in the middle window. Highlight the first TCP datagram
from the host computer, and move the mouse pointer to the middle window. It may be necessary to adjust
the middle window and expand the TCP record by clicking on the protocol expand box. The expanded
TCP datagram should look similar to Figure 3. To view your FTP session you can highlight any one of the
FTP packets and goto Analyze-Follow TCP Stream. What do you notice about the password you typed
in?

How is the first datagram in a TCP session identified?

__

__

Figure 4. TCP packet fields.

Refer to Figure 4, a TCP datagram diagram. An explanation of each field is provided to refresh the
student’s memory:

• TCP Source port number belongs to the TCP session host that opened a connection. The value

is normally a random value above 1023.
• Destination port number is used to identify the upper layer protocol or application on the remote

site. The values in the range 0–1023 represent the so called “well known ports” and are
associated with popular services and applications (as described in RFC 1700, such as telnet, File
Transfer Protocol (FTP), HyperText Transfer Protocol (HTTP), etc). The quadruple field
combination (Source IP Address, Source Port, Destination IP Address, Destination Port) uniquely
identifies the session to both sender and receiver.

• Sequence number specifies the number of the last octet in a segment.
• Acknowledgment number specifies the next octet expected by the receiver.
• Code Bits have a special meaning in session management and in the treatment of segments.

Among interesting values are:
• ACK (Acknowledgement of a segment receipt),
• SYN (Synchronize, only set when a new TCP session is negotiated during the TCP three-

way handshake).
• FIN (Finish, request to close the TCP session).

• Window size is the value of the sliding window - how many octets can be sent before waiting for
an acknowledgement.

• Urgent pointer is only used with an URG (Urgent) flag - when the sender needs to send urgent
data to the receiver.

• Options: The only option currently defined is the maximum TCP segment size (optional value).

Using the Wireshark capture of the first TCP session start-up (SYN bit set to 1), fill in information about
the TCP header:

From host computer to FTP Server (only the SYN bit is set to 1):

Source IP Address: ___.___.___.___

Destination IP Address: _______________

Source port number: ______________

Destination port number: ______________

Sequence number: ______________

Acknowledgement number: ___________

Header length: ______________

Window size: _______________

From FTP Server to host computer (only SYN and ACK bits are set to 1):

Source IP Address: ________________

Destination IP Address: ___.___.___.___

Source port number: ______________

Destination port number: ______________

Sequence number: ______________

Acknowledgement number: ___________

Header length: ______________

Window size: _______________

From host computer to FTP server (only ACK bit is set to 1):

Source IP Address: ___.___.___.___

Destination IP Address: _______________

Source port number: ______________

Destination port number: ______________

Sequence number: ______________

Acknowledgement number: ___________

Header length: ______________

Window size: _______________

Ignoring the TCP session started when a data transfer occurred, how many other TCP datagrams
contained a SYN bit?

__

__

Attackers take advantage of the three-way handshake by initiating a “half-open” connection. In this
sequence, the opening TCP session sends a TCP datagram with the SYN bit set and the receiver sends
a related TCP datagram with the SYN ACK bits set. A final ACK bit is never sent to finish the TCP
handshake. Instead, a new TCP connection is started in half-open fashion. With sufficient TCP sessions
in the half-open state, the receiving computer may exhaust resources and crash. A crash could involve a
loss of networking services, or corrupt the operating system. In either case the attacker has won,
networking service has been stopped on the receiver. This is one example of a denial-of-service (DoS)
attack.

Figure 5. TCP session management.

The FTP client and server communicate between each other, unaware and uncaring that TCP has control
and management over the session. When the FTP server sends a Response: 220 to the FTP client, the
TCP session on the FTP client sends an acknowledgment to the TCP session on FTP server. This
sequence is shown in Figure 5, and is visible in the Wireshark capture.

Figure 6. Orderly TCP session termination.

When the FTP session has finished, the FTP client sends a command to “quit”. The FTP server

acknowledges the FTP termination with a Response :221 Goodbye. At this time the FTP server TCP

session sends a TCP datagram to the FTP client, announcing the termination of the TCP session. The
FTP client TCP session acknowledges receipt of the termination datagram, then sends its own TCP
session termination. When the originator of the TCP termination, FTP server, receives a duplicate
termination, an ACK datagram is sent to acknowledge the termination and the TCP session is closed.
This sequence is shown in Figure 6, and visible in the Wireshark capture.

Without an orderly termination, such as when the connection is broken, the TCP sessions will wait a
certain period of time until closing. The default timeout value varies, but is normally 5 minutes.

Task 2: Identify UDP header fields and operation using a Wireshark TFTP session
capture.

Step 1: Capture a TFTP session.

Following the procedure in Task 1 above, open a command line window. The TFTP command has a
different syntax than FTP. For example, there is no authentication. Also, there are only two commands,
get, to retrieve a file, and put, to send a file.

>tftp –help

Transfers files to and from a remote computer running the TFTP service.

TFTP [-i] host [GET | PUT] source [destination]

 -i Specifies binary image transfer mode (also called

 octet). In binary image mode the file is moved

 literally, byte by byte. Use this mode when

 transferring binary files.

 host Specifies the local or remote host.

 GET Transfers the file destination on the remote host to

 the file source on the local host.

 PUT Transfers the file source on the local host to

 the file destination on the remote host.

 source Specifies the file to transfer.

 destination Specifies where to transfer the file.

Table 1. TFTP syntax for a Windows TFTP client.

Table 1 contains Windows TFTP client syntax. Start the TFTP server on your machine to allow a class
mate connect to your tftp server.

Start a Wireshark capture, then download a file from your classmates tftp server The command and
syntax to perform this is shown below:

>tftp 10.10.100.41 get testfile

Step 2: Analyze the UDP fields.

Figure 7. Summary capture of a UDP session.

Switch to the Wireshark capture windows. Student capture should be similar to the capture shown
in Figure 7. A TFTP transfer will be used to analyze Transport Layer UDP operation.

Figure 8. Wireshark capture of a UDP datagram.

In Wireshark, detailed UDP information is available in the middle window. Highlight the first UDP
datagram from the host computer, and move the mouse pointer to the middle window. It may be
necessary to adjust the middle window and expand the UDP record by clicking on the protocol
expand box. The expanded UDP datagram should look similar to Figure 8.

Figure 9. UDP format.

Refer to Figure 9, a UDP datagram diagram. Header information is sparse, compared to the TCP
datagram. There are similarities, however. Each UDP datagram is identified by the UDP source
port and UDP destination port.

Using the Wireshark capture of the first UDP datagram, fill in information about the UDP header.
The checksum value is a hexadecimal (base 16) value, denoted by the preceding 0x code:

Source IP Address: __.___.___.___

Destination IP Address: _______________

Source port number: ______________

Destination port number: ______________

UDP message length: _____________

UDP checksum: _____________

How does UDP verify datagram integrity?

__

__

Examine the first packet returned from the TFTP server. Fill in information about the UDP header:

Source IP Address:

Destination IP Address: ___.___.___.___

Source port number: ______________

Destination port number: ______________

UDP message length: _____________

UDP checksum: 0x _____________

Notice that the return UDP datagram has a different UDP source port, but this source port is used
for the remainder of the TFTP transfer. Since there is no reliable connection, only the original
source port used to begin the TFTP session is used to maintain the TFTP transfer.

Task 5: Reflection.

This lab provided students with the opportunity to analyze TCP and UDP protocol operations from
captured FTP and TFTP sessions. TCP manages communication much differently from UDP, but
reliability and guaranteed delivery requires additional control over the communication channel.
UDP has less overhead and control, and the upper-layer protocol must provide some type of
acknowledgement control. Both protocols, however, transport data between clients and servers
using Application Layer protocols and are appropriate for the upper-layer protocol each supports.
Explore the use of the netstat command to determine what port numbers are in use.

Since neither FTP nor TFTP are secure protocols, all data transferred is sent in clear text. This
includes any user ids, passwords, or clear text file contents. Analyzing the upper-layer FTP
session will quickly identify the user id, password, and configuration file passwords. Upper-layer
TFTP data examination is a bit more complicated, but the data field can be examined and
configuration user id and password information extracted.

