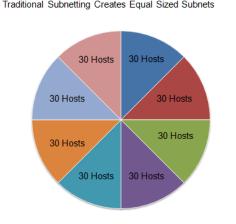
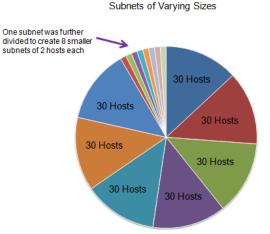
VLSM Week 7


Module : Computer Networks Lecturer: Lucy White <u>lbwhite@wit.ie</u> Office : 324 Benefits of Variable Length Subnet Masking

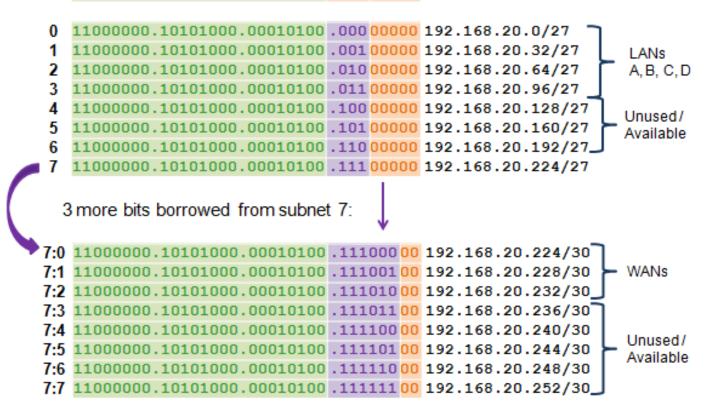

Traditional Subnetting Wastes Addresses

•Traditional subnetting - same number of addresses is allocated for each subnet.

•Subnets that require fewer addresses have unused (wasted) addresses. For example, WAN links only need 2 addresses.

•Variable Length Subnet Mask (VLSM) or subnetting a subnet provides more efficient use of addresses.

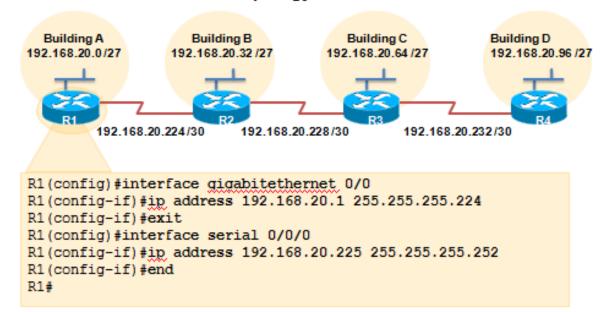
Benefits of Variable Length Subnet Masking Variable Length Subnet Masks (VLSM)


•VLSM allows a network space to be divided in unequal parts.

- •Subnet mask will vary depending on how many bits have been borrowed for a particular subnet.
- •Network is first subnetted, and then the subnets are subnetted again.
- •Process repeated as necessary to create subnets of various sizes.

Benefits of Variable Length Subnet Masking Basic VLSM

VLSM Subnetting Scheme


11000000.10101000.00010100 .000 00000 192.168.20.0/24

Benefits of Variable Length Subnet Masking VLSM in Practice

•Using VLSM subnets, the LAN and WAN segments in example below can be addressed with minimum waste.

- Each LANs will be assigned a subnet with /27 mask.
- •Each WAN link will be assigned a subnet with /30 mask.

Network Topology: VLSM Subnets

Benefits of Variable Length Subnet Masking VLSM Chart

	/27 Network	Hosts
Bldg A	.0	.130
Bldg B	.32	.3362
Bldg C	.64	.6594
Bldg D	.96	.97126
Unused	.128	.129158
Unused	.160	.161190
Unused	.192	.193222
	.224	.225254

VLSM Subnetting of 192.168.20.0 /24

	/30 Network	Hosts
WAN R1-R2	.224	.225226
WAN R2-R3	.228	.229230
WAN R3-R4	.232	.233234
Unused	.236	.237238
Unused	.240	.241242
Unused	.244	.245246
Unused	.248	.249250
Unused	.252	.253254

1

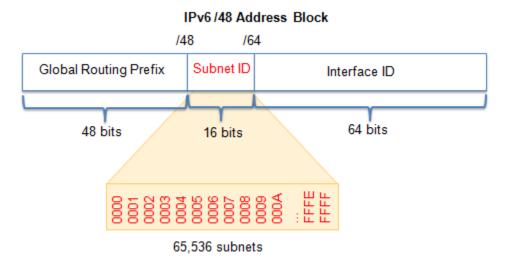
2

Structured Design Planning to Address the Network

Allocation of network addresses should be planned and documented for the purposes of:

- •Preventing duplication of addresses
- •Providing and controlling access
- •Monitoring security and performance

Addresses for Clients - usually dynamically assigned using Dynamic Host Configuration Protocol (DHCP)


Sample Network Addressing Plan

Use	First	Last
Host Devices	.1	.229
Servers	.230	.239
Printers	.240	.249
Intermediary Devices	.250	.253
Gateway (router LAN interface)	.254	

Network: 192.168.1.0/24

Subnetting an IPv6 Network Subnetting Using the Subnet ID

An IPv6 Network Space is subnetted to support hierarchical, logical design of the network

Address Block: 2001:0DB8:ACAD::/48

2001:0DB8:ACAD:0000::/64 Increment 2001:0DB8:ACAD:0001::/64 subnet ID to 2001:0DB8:ACAD:0002::/64 create 65,536 2001:0DB8:ACAD:0003::/64 2001:0DB8:ACAD:0004::/64 2001:0DB8:ACAD:0005::/64 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0007::/64 2001:0DB8:ACAD:0008::/64 2001:0DB8:ACAD:0009::/64 2001:0DB8:ACAD:000A::/64 2001:0DB8:ACAD:000B::/64 2001:0DB8:ACAD:000C::/64

subnets

Subnets 13 - 65,534 not shown

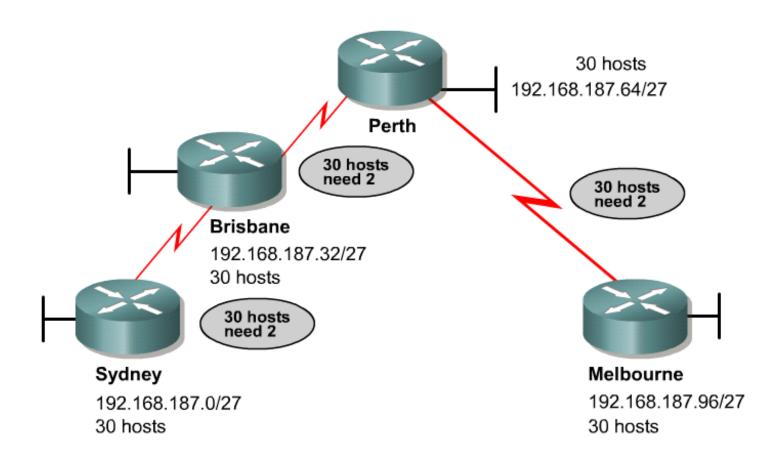
2001:0DB8:ACAD:FFFF::/64

VLSM (Variable Length Subnet Mask)

- If you know how to subnet, you can do VLSM.
- Example: 10.0.0/8
 - Subnet in /16 subnets:
 - 10.0.0/16
 - 10.1.0.0/16
 - 10.2.0.0/16
 - 10.3.0.0/16
 - Etc.
 - Subnet one of the subnets (10.1.0.0/16)
 - 10.1.0.0/24
 - 10.1.1.0/24
 - 10.1.2.0/24
 - 10.1.3.0/24
 - etc

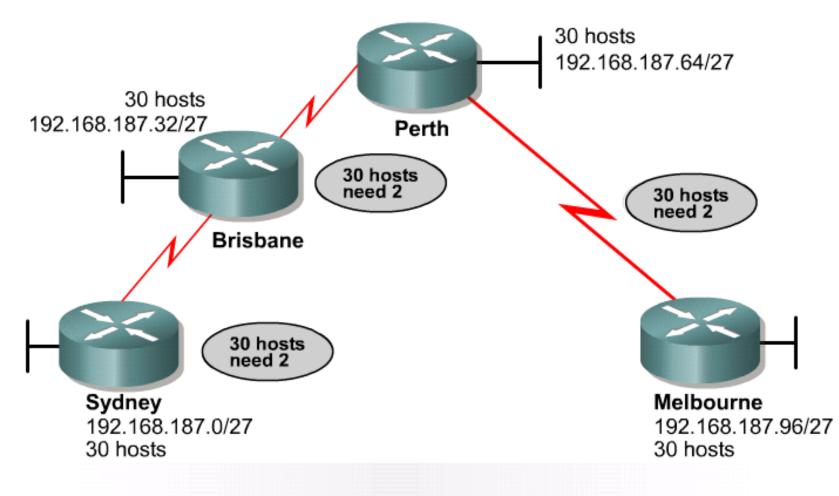
What is VLSM and Why is it used?

Subnet Masks		
255.255.255.252	11111111 1111111 11111111 11111100	30 bits
255.255.255.0	11111111 1111111 11111111 00000000	24 bits
255.255.252.0	11111111 1111111 11111100 00000000	22 bits


• VLSM allows an organization to use more than one subnet mask within the same network address space.

• Implementing VLSM is often referred to as "subnetting a subnet", and can be used to maximize addressing efficiency.

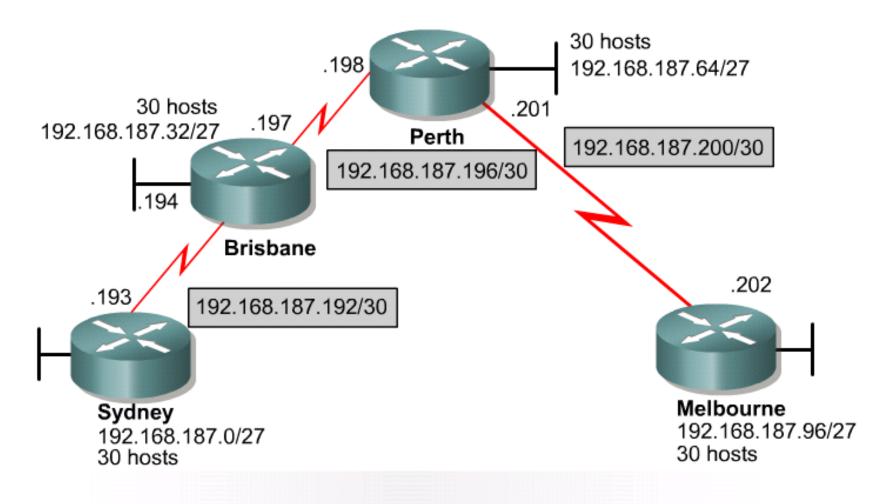
• Classful routing protocols require that a single network use the same subnet mask. Therefore, network 192.168.187.0 must use just one subnet mask such as 255.255.255.0.


• VLSM is simply a feature that allows a single autonomous system to have networks with different subnet masks. If a routing protocol allows VLSM, use a 30-bit subnet mask on network connections, 255.255.255.252, a 24-bit mask for user networks, 255.255.255.0, or even a 22-bit mask, 255.255.252.0, for networks with up to 1000 users.

A waste of Space

The above addressing scheme is fine for a small LAN. However, this addressing scheme is extremely wasteful if using point-to-point connections

When to use VLSM?


Use VLSM on the point-to-point links to use only two valid host addresses instead of wasting 30

When to use VLSM?

Subnet Number	Subnet Address		
subnet 0	192.168.187.0	/27	
subnet 1	192.168.187.32	/27	
subnet 2	192.168.187.64	/27	
subnet 3	192.168.187.96	/27	
subnet 4	192.168.187.128	/27	
subnet 5	192.168.187.160	/27	
subnet 6	192.168.187.192	/27	
subnet 7	192.168.187.224	/27	
Subnet Number	Subnet Address		
Subnet Number sub-subnet 0	Subnet Address 192.168.187.192	/30	
		/30 /30	
sub-subnet 0	192.168.187.192		
sub-subnet 0 sub-subnet 1	192.168.187.192 192.168.187.196	/30	
sub-subnet 0 sub-subnet 1 sub-subnet 2	192.168.187.192 192.168.187.196 192.168.187.200	/30 /30	
sub-subnet 0 sub-subnet 1 sub-subnet 2 sub-subnet 3	192.168.187.192192.168.187.196192.168.187.200192.168.187.204	/30 /30 /30	
sub-subnet 0 sub-subnet 1 sub-subnet 2 sub-subnet 3 sub-subnet 4	192.168.187.192 192.168.187.196 192.168.187.200 192.168.187.204 192.168.187.208	/30 /30 /30 /30 /30	

Subnet 6 is further broken into /30 subnets for Point-to-Point WAN Links

When to use VLSM?

Notice the /27 bit masks for the LANs, and the /30 for the serial links

Subnetting Exercise 1

Host IP Address	172.25.114.250
Network Mask	255.255.0.0 (/16)
Subnet Mask	255.255.255.192 (/26)

Find:

Number of Subnet Bits	
Number of Subnets	
Number of Host Bits per Subnet	
Number of Usable Hosts per Subnet	
Subnet Address for this IP Address	
IP Address of First Host on this Subnet	
IP Address of Last Host on this Subnet	
Broadcast Address for this Subnet	

Subnetting Exercise 2

Host IP Address	172.30.172.133
Subnet Mask	255.255.240.0
Number of Subnet Bits	
Number of Subnets	
Number of Host Bits per Subnet	
Number of Usable Hosts per Subnet	
Subnet Address for this IP Address	
IP Address of First Host on this Subnet	
IP Address of Last Host on this Subnet	
Broadcast Address for this Subnet	